Вестник Кольского научного центра РАН. 2018, №1.

Производство стеклообразных пеноматериалов: проблемы и решения Авторами [75] разработаны пеностеклокристаллические материалы на основе красного шлама и золы-уноса при соотношении компонентов 40:6 0 с добавкой в качестве вспенивателя CaCO 3 . Температура обжига составляла 760-840 °С. Материалы характеризовались объемной плотностью 0,33-0,41 г/см3 и прочностью при сжатии 0,33-2,74 МПа. Большое количество исследований посвящено использованию металлургических и топливных шлаков [76-78 и др.]. В работе [76] пеностекло было получено по порошковой технологии с использованием стеклобоя и титансодержащего доменного шлака с Na2B4O7•5H2O в качестве флюса при температуре 900 °C, в качестве газообразователя и стабилизатора пены добавляли CaCO3 и Na3PO4 12H2O соответственно. Оценивали влияние количества флюса на кажущуюся плотность, водопоглощение, прочность при сжатии, микроструктуру и кристаллические фазы пеностекла. Пеностекло, содержащее 10 мас. %Na2B4O7 5H2O, продемонстрировало наилучший комплекс свойств. Китайскими исследователями были получены стеклокерамические пеноматериалы на основе доменного шлака и отходов стекла [77]. Для образования зародышей кристаллических фаз использованы TiO2, ZrO2 и CaF2. В качестве пенообразователя, стабилизатора пены и флюса, добавляли CaCO3, Na3PO4 12H2O и Na2B4O7 5H2O соответственно. Материалы с 50 мас. % шлака обладают наилучшими свойствами: объемная плотность — 0,79 г/см3, водопоглощение — 2,71 % и прочность при изгибе — 14,34 МПа. Стеклокерамические пеноматериалы, описанные в статье [78], были получены с использованием 50-70 % шлака, образующегося при плазменной переработке твердых бытовых отходов. В качестве пенообразователя и флюса использовали карбонат кальция и буру соответственно. Исследовано влияние температуры спекания на плотность, механическую прочность и кристаллические фазы. Установлено, что пеноматериалы с 70 мас. % шлака, спеченные при температуре 920 °С, демонстрируют отличное соотношение прочности к плотности (прочность при сжатии более 2,5 МПа и плотность менее 0,3 г/см3) из-за образования микрокристаллических фаз. Е. А. Яценко с сотрудниками для получения пеностекла теоретически и экспериментально обоснована замена стеклобоя на золошлаковые отходы ТЭС в композиции с органическими (глицерин) и неорганическими пенообразователями (жидкое стекло, углеродные и карбонатные материалы) [79-85]. Б. М. Гольцманом было установлено, что при введении материала в зону температур около 600 °С в условиях скоростного обжига обеспечивается снижение интенсивности диффузионных процессов удаления газообразных продуктов реакций (пары воды, продукты диссоциации глицерина) за счет их капсуляции в порах размером до 0,1 мм и образования вязкого расплава жидкостекольного компонента, устраняющего капилляры между порами [86]. Расчетно-экспериментальным путем установлены два качественных уровня изменения структуры образцов, соответствующих пороговым величинам вязкости 107,6 и 107,0 Па с. По достижении температуры, соответствующей вязкости 107,6 Па с, происходит образование зародышей пор (0,2-0,3 мм), а при вязкости 107,0 П а с начинается резкий рост пор. Дальнейшее снижение вязкости при нагреве материала обеспечивает формирование структуры с закрытой пористостью и размером пор 2-3 мм [86]. Показано, что при содержании шлака в составе материала до 20 мас. % образующегося расплава достаточно для формирования полностью рентгеноаморфной структуры. При дальнейшем увеличении количества шлака в составе резко снижается интенсивность порообразования, что ведет к необходимости введения плавней (смесь фторида натрия и буры), которые обеспечивают образование необходимого количества расплава, а фторид натрия дополнительно играет роль активного компонента, взаимодействующего с кремнеземом шлака и ускоряющего общий процесс плавления шихты. Введение смеси плавней приводит к началу формирования кристаллических фаз на основе кремнезема в конечном продукте [86]. В работе [83] исследованы зависимости реакционной и вспенивающей способности композиций органических (глицерин) и неорганических (жидкое стекло, углеродные и карбонатные материалы) ВЕСТНИК Кольского научного центра РАН 1/2018(10) 147

RkJQdWJsaXNoZXIy MTUzNzYz