Вестник Кольского научного центра РАН. 2015, №1.
CONTENTS E.D. Tereshchenko, A.N. Milichenko, M.V. Shvets, S.M. Cherniakov, I.V. Korableva TOTAL ELECTRON CONTENT ESTIMSTION USING SATELLITES SIGNALS OF THE GLOBAL NAVIGATION SYSTEM GLONASS The smart estimation method of total electron content for signals of the global navigation satellite system GLONASS is presented. Comparison of calculated values of total electron content with obtained values of total electron content from data of other satellites and the global model UAM and the global ionosphere map GIM was done. Results have shown that the proposed method gave good agreement with results of the independent methods of total electron content calculations and can be an effective method of total electron content estimation from signals of the GLONASS satellites. Keywords: Global navigation satellite systems, total electron content, differential code biases. Authors Evgeny D. Tereschenko - Dr. Sc. (Math.), director of Polar Geophysical Institute KSC RAS; e-mail: general@pgi.ru Alexander N. Milichenko - vice-director of Polar Geophysical Institute KSC RAS; e-mail: alexander@pgi.ru Mikhail V. Shvets - senior engineer of Polar Geophysical Institute KSC RAS; e-mail: shvec@pgi.ru Sergey M. Chernyakov - scientific researcher of Polar Geophysical Institute KSC RAS; e-mail: sergeich@pgi.ru Irina Korablyova - junior scientific researcher of Polar Geophysical Institute KSC RAS; e-mail: irinakorab@pgi.ru LITERATURA 1. GLONASS: principy postroeniya i funkcionirovaniya / pod red. A.I. Perova, V.N. Harisova. 3-e izd., pererab. M.: Radiotekhnika, 2005. 688 s. 2. GPS. Interface specification IS-GPS-200. Rezhim dostupa: http://www.gps.gov/technical/icwg/ (data obrashcheniya 23.12.2014 g.). 3. Afrajmovich Eh.L., Perevalova N.P. GPS-monitoring verhnej atmosfery Zemli. Irkutsk: GU NC RVH VSNC RAMN, 2006. 480 s. 4. Sardon E., Zarraoa N. Estimation of total electron content using GPS data: How stable are the differential satellite and receiver instrumental biases? // Radio Science. 1997. Vol. 32, № 5. P. 1899-1910. 5. Choi B.K., Cho J., Lee S. Estimation and analysis of GPS receiver differential code biases using KGN in Korean Peninsula // Adv. Space Res. 2011. Vol. 47. P. 1590-1599. 6. International GNSS service. ftp://igs.org/pub/data/format/rinex302.pdf (data obrashcheniya 23.12.2014 g.). 7. Zhao B., Wan W., Liu L., Ren B. Characteristics of the ionospheric total electron content of the equatorial ionization anomaly in the Asian-Australian region during 1996-2004 // Ann. Geophys. 2009. Vol. 27. P. 3861-3873. 8. Isimaru A. Rasprostranenie i rasseyanie voln v sluchajno-neodnorodnyh sredah. M.: Mir, 1981. T. 2. 280 s. 9. Sardon E., Ruis A., Zarraoa N. Estimation of the transmitter and receiver biases and ionospheric total electron content from Global Positioning System observations // Radio Sci. 1994. Vol. 29, N 3. P. 577-586. 10. Jin R., Jin S., Feng G. M_DCB: Matlab code for estimating GNSS satellite and receiver differential code biases // GPS Solut. 2012. Vol. 16, № 4. P. 541-548. 11. Zhang W., Zhang D.H., Xiao Z. The influence of geomagnetic storms on the estimation of GPS instrumental biases // Ann. Geophys. 2009. Vol. 27. P. 1613 1623. 12. Coco D.C., Coker C., Dahlke S.R., Clynch J.R. Variability of GPS satellite differential group delay biases // IEEE T. Aero. Elec. Sys. 1991. Vol. 27. P. 931-938. 13. Shagimuratov I.I., Chernyak YU.V., Zaharenkova I.E., Yakimova G.A. Ispol'zovanie kart polnogo ehlektronnogo soderzhaniya dlya analiza prostranstvenno-vremennoj struktury ionosfery // Zhurnal fizicheskoj himii. 2013. T. 32, № 11. S. 82-87. 14. Ma G., Maruyama T. Derivation of TEC and estimation of instrumental biases from GEONET in Japan // Ann. Geophys. 2003. Vol. 21. P. 2083-2093. 15. Ma X., Maruyama T., Ma G., Takeda T. Determination of GPS receiver differential biases by neural network parameter estimation method // Radio Sci. 2005. Vol. 40, № 1: RS1002. doi:10.1029/2004 RS003072. 16. Lanyi G.E., Roth T. A comparison of mapped and measured total ionospheric electron content using Global Positioning System and beacon satellite observations // Radio Sci. 1988. Vol. 23. P. 483-492. 17. Ho C.M., Wilson B.D., Mannucci A.J., Lindqwister U.J., Yuan D.N. A comparative study of ionospheric total electron content measurements using global ionospheric maps of GPS, TOREX radar, and Bent model // Radio Sci. 1997. Vol. 32. P. 1499-1521. 18. Jakowski N., Sardon E., Engler E., Jungstand A., Klahn D. Relationships between GPS-signal propagation errors and EISCAT observations // Ann. Geophys. 1996. Vol. 14. P. 1429-1436. 19. Global Ionosphere Maps Produced by CODE. Rezhim dostupa: http://aiuws.unibe.ch/ionosphere/, ftp://cddis.nasa.gov/pub/gps/products/ionex/ (data obrashcheniya 23.12.2014 g.). 20. Schaer S., Gurtner W., Feltens J. IONEX: The IONosphere Map Exchange Format Version 1 // In Proceedings of the 1998 IGS Analysis Centres Workshop, ESOC. 1998. P. 176 Herald o fKola Science Centre o f the Russian Academy o f Sciences 1/2005(20)
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz