Вестник Кольского научного центра РАН. 2014, №1.

инструментов моделирования гидродинамики многофазных сред являются САЕ-системы (Computer-Aided Engineering) и CFD-программы (Computational Fluid Dynamics) [4]. CFD-модели разделительных аппаратов дают возможность учитывать геометрию исследуемого объекта (разделительного аппарата), граничные условия и физические свойства подвергаемых разделению минералов, а также другие важные аспекты, влияющие на адекватность модели задачам исследования. При этом нет необходимости существенно упрощать формальное описание моделируемых физических процессов. В качестве математического аппарата для построения моделей использован аппарат многофазного многоскоростного континуума (ММК). Вычислительный эксперимент над такими моделями приближается по своим качествам к натурному эксперименту. В ходе проекта ММК модели были разработаны для основных разделительных процессов, используемых на обогатительных предприятиях Мурманской области [5]. В основу математической модели процесса разделения минеральных комплексов в магнитно-гравитационном аппарате положен эффект формирования ожиженного слоя из ферромагнитных частиц в восходящем водном потоке при помещении его в однородное магнитное поле. При разработке модели использовались результаты работы [6], в которой приводится оценка величины снижения коэффициента гидродинамического сопротивления при действии на ферромагнитный слой внешнего однородного магнитного поля и сдвигового воздействия потока жидкости. Модель реализована в трехмерной геометрии цилиндроконического корпуса аппарата высотой 1 м и диаметром 0.4 м. Эксперименты с моделью позволили исследовать течения ферромагнитной суспензии в рабочем объеме магнитно-гравитационного аппарата и провести анализ ряда характеристик этого процесса. Полученные результаты дают основания утверждать, что модель можно использовать для прогнозирования технологических показателей разделения в магнитно-гравитационных аппаратах различных конструкций, а также для совершенствования аппаратов данного типа. В математической модели процесса флотации описывается обмен механической и тепловой энергией и веществом. При формулировке условий материального баланса рассматривается производительность моделируемого объекта по удельным временным объемным расходам входных и выходных потоков, а также их физические и вещественные характеристики. В качестве конкретного объекта моделирования рассматривалась камера пневмомеханической флотационной машины ОК-38. При формулировке условий однозначности использованы данные технологической схемы основной нефелиновой флотации АНОФ-2 ОАО «Апатит». Инструментальные средства компьютерного моделирования позволяют получить как графическое, так и числовое представление результатов для каждой из фаз в любой точке пространства флотационной камеры. Вычислительный эксперимент на основе разработанной модели флотационного аппарата дает информацию не только о пространственных распределениях скоростей и концентраций отдельных компонентов многофазной системы, но и о технологических характеристиках моделируемого аппарата. Созданы имитационные модели и проведены компьютерные эксперименты по исследованию влияния формы и геометрических параметров рабочих объемов гравитационных аппаратов на динамику распределения частиц различной крупности и формы в рабочем объеме аппарата. Доказано, что изменение формы рабочего объема аппарата позволяет варьировать кинетику распределения разделяемых частиц различных классов крупности. Разработка моделей экспресс-анализа обогатительных процессов Для реализации моделей экспресс-анализа динамики процессов обогащения руд, наряду с методами Data Mining, были использован математический аппарат нейронных сетей и аппарат нечеткой логики [7]. Нейронные сети обладают рядом свойств, которые определяют перспективность их применения в качестве аналитического аппарата систем управления. В контексте рассматриваемой задачи это прежде всего способность к обучению на примерах. Наличие больших объемов данных мониторинга, в которых представлены взаимосвязанные измерения и входов, и выходов исследуемой системы, позволяет обеспечить нейросеть репрезентативными обучающими выборками. Важны также способность нейронной сети адаптироваться 19

RkJQdWJsaXNoZXIy MTUzNzYz