Вестник Кольского научного центра РАН. 2012, №4.

Практическая возможность использования способа в конкретных технологических целях в значительной степени определяется электрическими и энергетическими параметрами процесса, такими как уровень рабочих напряжений U, производительность единичного разряда V, энергоемкость разрушения W. Уровень рабочего напряжения определяет техническую и эксплуатационную надежность техники. При слишком высоком уровне рабочего напряжения снижается надежность работы изоляционных элементов систем передачи импульсов и породоразрушающих устройств, снижается стабильность работы генерирующей аппаратуры, повышаются габариты оборудования. Производительность и энергоемкость разрушения определяют экономическую эффективность технологии. Определение этих параметров для различных горных пород и условий разрушения и составляло задачу первого этапа разработки электроимпульсного способа разрушения материалов, имея конечной целью выявление путей оптимизации процесса, разработку методов расчета показателей разрушения. Механизм ЭИ может быть представлен двумя процессами, действующими во времени друг за другом: образование в результате электрического пробоя в поверхностном слое твердого тела канала разряда и последующее разрушение твердого тела под действием механических напряжений, возникающих в результате расширения канала разряда при выделении в нем энергии емкостного накопителя. Первая стадия процесса определяет уровень напряжения, при котором реализуется процесс («рабочее напряжение»), технические параметры потенциального разрушения (объем откольной воронки). Выбором оптимальных параметров импульсного напряжения и условий пробоя (вид среды, геометрия электродной конструкции) достигаются минимальные градиенты напряжения пробоя. На второй стадии процесса за счет оптимизации преобразования энергии накопителя в работу разрушения достигается минимальная энергоемкость разрушения материала. Феноменология пробоя Разрядный процесс в промежутке начинается с развития многочисленных «кистевых» разрядов по поверхности твердого тела с обоих электродов. По мере продвижения «кистевых» разрядов с их головок инициируются многочисленные каналы неполного пробоя в твердом теле, прорастающие с электродов навстречу друг другу. Внедрение большого объемного заряда на границу раздела сред тормозит развитие разрядного процесса по поверхности твердого тела. Финальная стадия процесса представляет собой смыкание развивающихся с более высокой скоростью каналов разряда в твердом теле, которое опережает по времени возможное при других условиях смыкание кистевых разрядов по поверхности. Характер разрядных процессов существенно зависит от полярности импульса и расположения электродов относительно поверхности твердого тела. Практическую значимость в этих исследованиях имеют данные о технологической эффективности пробоя, показателем которой служит величина потенциального объема разрушения V, определяемая протяженностью ls и глубиной внедрения разряда в твердое тело h. Имелись попытки аналитического рассмотрения задачи о глубине внедрения канала разряда в твердое тело. И.И. Каляцким (см. [12]) задача рассмотрена в приближении, соответствующем замене реальной картины электрического поля между электродами породоразрушающего устройства полем на краю пластин плоского конденсатора (рис 4). Предполагалось, что разряд развивается по направлению, соответствующему силовой линии поля максимальной напряженности, и при условии, что внедрение разряда начинается непосредственно с острий электродов или из точек, исчезающе мало удаленных от острий. Решение задачи приводит к получению следующих соотношений: 170 Рис. 4. Картина электрического поля в системе с электродами на границе двух сред.

RkJQdWJsaXNoZXIy MTUzNzYz