Вестник Кольского научного центра РАН. 2010, №3.

УДК 661.183.124:548.3+552.331.4/.5(470.21) НАНОПОРИСТЫЕ ТИТАНОСИЛИКАТЫ: КРИСТАЛЛОХИМИЯ, УСЛОВИЯ ЛОКАЛИЗАЦИИ В ЩЕЛОЧНЫХ МАССИВАХ И ПЕРСПЕКТИВЫ СИНТЕЗА А.И. Николаев1, Г.Ю. Иванюк2, С.В. Кривовичев3, В.Н. Яковенчук2, Я.А. Пахомовский2, Л.Г. Герасимова1, М.В. Маслова1, Е.А. Селиванова2, Д.В. Спиридонова4, Н.Г. Коноплева5 'ЦНМ КНЦ РАН, ИХТРЭМС КНЦ РАН; 2ЦНМ КНЦ РАН, ГИ КНЦ РАН; 3ЦНМ КНЦ РАН, СПбГУ; 4СПбГУ; 5ЦНМ КНЦ РАН Аннотация Нанопористые титаносиликаты с ионообменными свойствами в настоящее время используются промышленностью для селективного извлечения радионуклидов Cs-137 и Sr-90 из холодных водных растворов, извлечения и концентрирования тяжелых и редких элементов и пр. Основные эффективно используемые в промышленности микро- и нанопористые титаносиликаты (ETS-4, IONSIV IE-911 и др.) являются синтетическими аналогами зорита и ситинакита, открытых в Хибинском и Ловозерском щелочных комплексах. В статье приведены данные о месте находок, морфологии природных выделений и кристаллической структуре ломоносовита, мурманита, зорита, чивруайита, ситинакита, минералов группы иванюкита (иванюкит-Na-T, иванюкит-Na-C, иванюкит-К и иванюкит-Cu), минералов ряда линтисит - пункаруайвит. Большинство природных нанопористых гетерокаркасных силикатов открыто в пределах крупнейшего в мире Хибинского массива щелочных пород на Кольском полуострове. В Кольском научном центре РАН в феврале 2010 г. создан Центр исследований природных и синтетических нано- и микропористых веществ (ЦНМ КНЦ РАН). Ключевые слова: нанопористые титаносиликаты, ломоносовит, мурманит, зорит, чивруайит, ситинакит, иванюкит, линтисит, пункаруайвит. Введение Интерес к микро- и нанопористым материалам с гетерокаркасными структурами связан с целым рядом проблем современной технологической цивилизации. Одной из них является проблема безопасного захоронения радиоактивных отходов. Важной стадией процесса переработки отработанного ядерного топлива (ОЯТ) является охлаждение тепловыделяющих сборок («твэлов») в водных бассейнах, располагающихся непосредственно на атомных электростанциях. При охлаждении вода обогащается радионуклидами Cs-137, Cd-113, Co-60, Mn-54 и Sr-90, содержащимися в ОЯТ. При переработке ОЯТ в рамках замкнутого ядерного цикла также образуется большое количество жидких радиоактивных отходов в виде растворов, обогащенных указанными радионуклидами, в связи с чем необходимы эффективные современные технологии, направленные на селективное извлечение ионов указанных металлов из водных сред. Одно из возможных решений - использование нанопористых материалов с ионообменными свойствами, способных экстрагировать радиоактивные изотопы из водных растворов. Используемые в настоящее время смолы и полимерные материалы, к сожалению, не являются радиационно устойчивыми, что создает серьезные проблемы для их последующего захоронения. Использование цеолитов также не решает проблему, ввиду их чувствительности к pH раствора и, опять же, низкой радиационной устойчивости. Именно поэтому внимание ученых и технологов обращено к нанопористым титано- и ниобосиликатам, большое число которых встречается в природе как минеральные виды. Эти соединения обладают большей устойчивостью к радиации и изменению кислотно-основных свойств водных растворов по сравнению не только со смолами и полимерными материалами, но также с фосфатами и цеолитами. Кроме того, наличие у титано- и ниобосиликатов катиона с нететраэдрической координацией и, как правило, большего размера, чем тетраэдрически координированные Al3+ и Si4+, обусловливает большее разнообразие топологических типов кристаллических структур, чем в цеолитах, и, как следствие, большую вариацию пористости и связанных с ней свойств. 51

RkJQdWJsaXNoZXIy MTUzNzYz