Вестник Кольского научного центра РАН. 2010, №2.

наборами параметров (J0, у, Ay, C) и третью модель: в) с полностью независимыми параметрами и направлениями прихода частиц. Соответственно, число параметров во второй модели увеличивается до 10, а в третьей, до 12. При поиске минимума функции (2) модели потока частиц а, б, в используются в следующем порядке: если при использовании однонаправленной модели (а) оптимизационный процесс не сходится, используется вторая модель (б) с противоположно направленными потоками. Если же и в этом случае наблюдается большая остаточная ошибка, применяется третья модель (в), с полностью независимыми потоками. С целью проверки точности рассматриваемой методики мы применяли третью модель (в) для событий, заведомо описываемых однонаправленной моделью (а). Окончательное решение незначительно отличалось от расчета по однонаправленной модели. Наблюдаемое питч-угловое распределение также не всегда может быть описано функцией, близкой к функции Гаусса. Не всегда удается его описать и комбинацией двух таких потоков из противоположных направлений, что наблюдается в случаях т.н. двунаправленной анизотропии. В данной работе мы использовали выражение для питч-углового распределения сложной формы, которое позволяет добиться хорошей сходимости процесса оптимизации: F (в ( R )) ~ exp( - в 2 / C )(1 - a exp( - (в - п / 2 )2) / b (4) Такая функция имеет особенность при значениях питч-угла, близких к п/2 и, в принципе, может учитывать особенности в питч-угловых распределениях, предсказываемые теорией распространения частиц в ММП (например, [8, 9]). По своим свойствам выражение (3) близко к функции, применявшейся в работе [2] для описания сложных случаев питч-углового распределения. При использовании функции (4) к шести вышеперечисленным параметрам потока РСП добавляется еще два параметра: а и b. При нулевом значении этих параметров выражение (4) переходит в обычную функцию Гаусса. Примеры анализа событий с РСП В качестве наглядного примера рассмотрим анализ события 2.11.2003 г. (GLE №67 ). Рис. 2. Профили наземного возрастания в событии 2.11.2003 г. на станциях НМ: а - Терре Адели (ТА), Апатиты (Ап), Наин (На); б - Мак-Мердо (МкМ), м. Шмидта (М.Ш.), Норильск (Но), в - асимптотические конусы приема для вертикально падающих частиц для соответствующих станций, рис. 2а,б. Жирными отрезками линий показаны участки конусов 1-3 ГВ, дающие максимальный вклад в отклик НМ Событие 2.11.2003 г. было связано со вспышкой балла 2B/X8.3, гелиокоординаты S18 W59, начало радиоизлучения II типа 17.14 UT. Событие имело сравнительно небольшую амплитуду и заметную анизотропию. На рис. 2а и б показаны профили возрастания на ряде станций НМ. Максимальное возрастание наблюдалось на южнополярных станциях Мак-Мердо и Терре Адели (~ 14%), средняя величина возрастания (6-11%) - на станциях Апатиты, м. Шмидта, и Норильск. Ст. Наин (Канада) не 9

RkJQdWJsaXNoZXIy MTUzNzYz