Вестник МГТУ, 2025, Т. 28, № 4/1.
Яшников Д. Н. и др. Исследование системы управления асинхронным электроприводом. References Kulincha, P. V. 2024. Using random forest for data classification. Molodoy Uchenyy, 24(523), pp. 88-91. URL: https://moluch.ru/archive/523/115562/. EDN: QOOEIG. (In Russ.) Martynova, U. A. 2020. Machine learning methods for assessing enterprise competitiveness. Russian Journal of Innovation Economics, 10(1), pp. 549-562. DOI: https://doi.org/10.18334/vmec.10.L100669. EDN: CFTYSV. (In Russ.) Rodionov, A. V., Ishchenko, K. L. 2024. Investigation of the influence of k-nearest neighbors algorithm parameters on model quality metrics. System Analysis & Mathematical Modeling, 6(2), pp. 251-262. DOI: https://doi.org/10.17150/2713-1734.2024.6(2).251-262. EDN: VVJQSW. (In Russ.) Tsukanov, A. V., Litsin, K. V. 2024. Development of an automated control system for the electric drive of a winder drum. Metallurg, 1, pp. 95-99. DOI: https://doi.org/10.52351/00260827_2024_1_95. EDN: OJYVBJ. (In Russ.) Chistyakov, S. P. 2013. Random forests: An overview. Transactions o f the Karelian Research Centre o f the Russian Academy o f Sciences, 1, pp. 117-136. EDN: PZBGBL. (In Russ.) Bishop, C. M. 2006. Pattern recognition and machine learning. Springer, New York, NY. Boateng, E. Y., Otoo, J., Abaye, D. A. 2020. Basic tenets of classification algorithms k-nearest-neighbor, support vector machine, random forest and neural network: A review. Journal o f Data Analysis and Information Processing, 8(4), pp. 341-357. DOI: https://doi.org/10.4236/jdaip.2020.84020. Hasan, M., Ladha, B. Z., Shah, R., Rizvi, S. M. H. 2024. ML-driven distribution network aggregation considering load and inverter-based resources. 26th International Multi-Topic Conference (INMIC), Karachi, Pakistan, pp. 1-6. DOI: https://doi.org/10.1109/inmic64792.2024.11004393. Laiton NSicacha, V., Garzon, A. M., Celeita D., Le, T. D. 2023. A review of data-driven solutions to power up maintenance of electrical systems for predictive decision making through fault analysis. IEEE Industry Applications Society Annual Meeting (IAS), Nashville, TN, USA, pp. 1-7. DOI: https://doi.org/10.1109/ ias54024.2023.10406490. Litsin, K. V., Baskov, S. N., Morkovnik, D. A. 2023. А model of automated mold flux feeding into the crystallizer of a continuous casting machine. CIS Iron and Steel Review, 26, pp. 33-38. DOI: https://doi.org/10.17580/ cisisr.2023.02.05. EDN: CWKVOK. Wang, L., Eng, S. C. B., Eng, M., Eng, D. Y. B. et al. 2014. PID and predictive control of electrical drives and power converters using Matlab®/Simulink®. John Wiley & Sons Singapore Pte. Ltd. DOI: https://doi.org/ 10.1002/9781118339459. Сведения об авторах Яшников Дмитрий Николаевич - ул. 60-летия Октября, 15, г. Москва, Россия, 117312; Национальный исследовательский технологический университет "МИСИС", студент; e-mail: n_buravkin@mail.ru Dmitriy N. Yashnikov - 15, 60-letiya Oktyabrya Str., Moscow, Russia, 117312; University of Science and Technology "MISIS", Student; e-mail: n_buravkin@mail.ru Лицин Константин Владимирович - пр. Ленина, 76, г. Челябинск, Россия, 454080; Южно-Уральский государственный университет (национальный исследовательский университет), канд. техн. наук, доцент; e-mail : litsin.kv@misis.ru, O RCID: https://orcid.org/0000-0002-4970-0740 Konstantin V. Litsin - 76 Lenina Ave., Chelyabinsk, Russia, 454080; South Ural State University (National Research University), Cand. Sci. (Engineering), Associate Professor; e-mail : litsin.kv@misis.ru, O RCID: https://orcid.org/0000-0002-4970-0740 538
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz