Вестник МГТУ, 2025, Т. 28, № 2.
Грибкова В. А. и др. Разработка пищевых продуктов на основе циклодекстринов Araujo, L. D. S. S., Lazzara, G., Chiappisi, L. 2021. Cyclodextrin/surfactant inclusion complexes: An integrated view of their thermodynamic and structural properties. Advances in Colloid and Interface Science , 289. Article number: 102375. DOI: http://doi.org/10.1016/j.cis.2021.102375. Bednarek, E., Bocian, W., Michalska, K. 2019. Nuclear magnetic resonance spectroscopic study of the inclusion complex of (R)-tedizolid with HDAS-P-CD, P-CD, and y-cyclodextrin in aqueous solution. Journal o f Pharmaceutical and Biomedical Analysis, 169, pp. 170-180. DOI: http://doi.org/10.1016/jjpba.2019.02.031. Borisova, A. V., Shayarova, M. V., Shishkina, N. Yu. 2021. Functional foods: The relationship between theory, production and consumer. New Technologies, 17(1), pp. 21-32. = Борисова А. В., Шаярова М. В., Шишкина Н. Ю. Функциональные продукты питания: связь между теорией, производством и потребителем // Новые технологии. 2021. Т. 17, № 1. С. 21-32. DOI: https://doi.org/10.47370/2072-0920-2021-17-1-21-32. EDN: KMZWIA. (In Russ.) Christoforides, E., Andreou, A., Papaioannou, A., Bethanis, K. 2022. Structural studies of piperine inclusion complexes in native and derivative P-cyclodextrins. Biomolecules, 12(12). Article number: 1762. DOI: https://doi.org/10.3390/biom12121762. Crini, G. 2014. Review: A history of cyclodextrins. Chemical Reviews, 114(21), pp. 10940-10975. DOI: https://doi.org/10.1021/cr500081p. da Rocha Neto, A. C., da Rocha, A. B. D. O., Maraschin, M., di Piero, R. M. et al. 2018. Factors affecting the entrapment efficiency of p-cyclodextrins and their effects on the formation of inclusion complexes containing essential oils. Food Hydrocolloids, 77, pp. 509-523. DOI: https://doi.org/10.1016/j.foodhyd.2017.10.029. Das, S., Nath, S., Singh, T. S., Chattopadhyay, N. 2020. Cavity size dependent stoichiometry of probe - cyclodextrin complexation: Experimental and molecular docking demonstration. Journal o f Photochemistry and PhotobiologyA: Chemistry, 388. Article number: 112158. DOI: http://doi.org/10.1016/j.jphotochem.2019.112158. do Nascimento Cavalcante, A., Feitosa, C. M., da Silva Santos, F. P., de Sousa, A. P. R. et al. 2019. Elaboration and characterization of the inclusion complex between p-cyclodextrin and the anticholinesterase 2-oleyl-1,3- dipalmitoyl-glycerol extracted from the seeds of Platonia insignis MART. Journal o f Molecular Structure, 1177, pp. 286-301. DOI : https://doi.org/10.1016/j.molstruc.2018.09.067. Frolova, A. S., Milentyeva, I. S., Fedorova, A. M., Miller, E. S. et al. 2024. Effect of biologically active substances on thermal and oxidative stress of model objects Caenorhabditis elegans. Food Processing: Techniques and Technology, 54(3), pp. 571-584. = Фролова А. С., Милентьева И. С., Федорова А. М., Миллер Е. С. [и др.]. Влияние биологически активных веществ на тепловой и окислительный стресс модельных объектов Caenorhabditis elegans // Техника и технология пищевых производств. 2024. Т. 54, № 3. С. 571-584. DOI: https://doi.org/10.21603/2074-9414-2024-3-2530. EDN: KEDBNI. (In Russ.) Guendouzi, O., Guendouzi, A., Ouici, H. B., Brahim, H. et al. 2020. A quantum chemical study of encapsulation and stabilization of gallic acid in p-cyclodextrin as a drug delivery system. Canadian Journal o f Chemistry, 98(4), pp. 204-214. DOI: https://doi.org/10.1139/cjc-2019-0464. Iodine deficiency disorders and their elimination. 2017. Ed.: E. N. Pearce. Springer International Publishing AG. Jambhekar, S. S., Breen, P. 2016. Cyclodextrins in pharmaceutical formulations I: Structure and physicochemical properties, formation of complexes, and types of complex. Drug Discovery Today, 21(2), pp. 356-362. DOI: https://doi.org/10.1016/j.drudis.2015.11.017. Janicka, P., Kaykhaii, M., Plotka-Wasylka, J., G^bicki, J. 2022. Supramolecular deep eutectic solvents and their applications. Green Chemistry, 24(13), pp. 5035-5045. DOI: https://doi.org/10.1039/D2GC00906D. Jia, Z., Luo, Y., Barba, F. J., Wu, Y. et al. 2022. Effect of P-cyclodextrins on the physical properties and anti- staling mechanisms of corn starch gels during storage. Carbohydrate Polymers , 284. Article number: 119187. DOI: https://doi.org/10.1016/j.carbpol.2022.119187. Kato, S., Aoshima, H., Saitoh, Y., Miwa, N. 2009. Highly hydroxylated or y-cyclodextrin-bicapped water- soluble derivative of fullerene: The antioxidant ability assessed by electron spin resonance method and P-carotene bleaching assay. Bioorganic & Medicinal Chemistry Letters, 19(18), pp. 5293-5296. DOI: https://doi.org/10.1016/j.bmcl.2009.07.149. Kavetsou, E., Pitterou, I., Katopodi, A., Petridou, G. et al. 2021. Preparation, characterization, and acetylcholinesterase Iinhibitory ability of the inclusion complex of P-Cyclodextrin-Cedar (Juniperus phoenicea) essential oil. Micro, 1(2), pp. 250-266. DOI: https://doi.org/10.3390/micro1020019. Lechat, F. L., Wouessidjewe, D., Herrenknech, C., Duchene, D. 1992. Preparation and stability of iodine/a cyclodextrin inclusion complex. Drug Development and Industrial Pharmacy, 18(17), pp. 1853-1863. DOI: https://doi.org/10.3109/03639049209046335. Leclercq, L. 2016. Interactions between cyclodextrins and cellular components: Towards greener medical applications? Beilstein Journal o fOrganic Chemistry, 12, pp. 2644-2662. DOI: https://doi.org/10.3762/bjoc.12.261. Li, T., Guo, R., Zong, Q., Ling, G. 2022. Application of molecular docking in elaborating molecular mechanisms and interactions of supramolecular cyclodextrin. Carbohydrate Polymers, 276. Article number: 118644. DOI: https://doi.org/10.1016/j.carbpol.2021.118644. 160
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz