Вестник МГТУ, 2025, Т. 28, № 2.
Скородумов А. С. и др. Перспективы использования инулина и его модификаций. Freitas, C. M. P., Coimbra, J. S. R., Souza, V. G.L., Sousa, R. C. S. 2021. Structure and applications of pectin in food, biomedical, and pharmaceutical industry: A review. Coatings, 11(8). Article number: 922. DOI: https://doi.org/10.3390/coatings11080922. Gibis, M., Schuh, V., Weiss, J. 2015. Effects of carboxymethyl cellulose (CMC) and microcrystalline cellulose (MCC) as fat replacers on the microstructure and sensory characteristics of fried beef patties. Food Hydrocolloids, 45, pp. 236-246. DOI: https://doi.org/10.1016/j.foodhyd.2014.11.021. Glisic, M., Baltic, M., Glisic, M., Trbovic, D. et al. 2019. Inulin-based emulsion-filled gel as a fat replacer in prebiotic- and PUFA-enriched dry fermented sausages. International Journal o f Food Science and Technology , 54(3), pp. 787-797. DOI: https://doi.org/10.1111/ijfs.13996. Guardeno, L. M., Vazquez-Gutierrez, J. L., Hernando, I., Quiles, A. 2013. Effect of different rice starches, inulin, and soy protein on microstructural, physical, and sensory properties of low-fat, gluten, and lactose free white sauces. Czech Journal o f Food Sciences, 31(6), pp. 575-580. DOI: https://doi.org/10.17221/483/ 2012-cjfs. Hamdi, A., Viera-Alcaide, I., Guillen-Bejarano, R., Rodriguez-Arcos, R. et al. 2023. Asparagus fructans as emerging prebiotics. Foods, 12(1). Article number: 81. DOI: https://doi.org/10.3390/foods12010081. Han, L., Hu, B., Ratcliffe, I., Senan, C. et al. 2020. Octenyl-succinylated inulin for the encapsulation and release of hydrophobic compounds. Carbohydrate Polymers, 238. Article number: 116199. DOI: https://doi.org/ 10.1016/j.carbpol.2020.116199. Han, L., Sun, J., Williams, P. A., Yang, J. et al. 2022. Octenyl-succinylated inulins for the delivery of hydrophobic drug. International Journal o f Biological Macromolecules, 221, pp. 1112-1120. DOI: https://doi.org/10.1016/j.ijbiomac.2022.09.068. Himashree, P., Sengar, A. S., Sunil, C. K. 2022. Food thickening agents: Sources, chemistry, properties and applications - A review. International Journal o f Gastronomy and Food Science, 27. Article number: 100468. DOI: https://doi.org/10.1016/j.ijgfs.2022.100468. Hosseinvand, A., Sohrabvandi, S. 2016. Physicochemical, textural and sensory evaluation of reduced-fat mustard sauce formulation prepared with Inulin, Pectin and P-glucan. Croatian Journal o f Food Science and Technology, 8(2), pp. 46-52. DOI: https://doi.org/10.17508/cjfst.2016.8.2.01. Hughes, R. L., Alvarado, D. A., Swanson, K. S., Holscher, H. D. 2022. The prebiotic potential of inulin-type fructans: A systematic review. Advances in Nutrition, 13(2), pp. 492-529. DOI: https://doi.org/10.1093/ advances/nmab 119. Ishikawa, T., Nanjo, F. 2009. Dietary cycloinulooligosaccharides enhance intestinal immunoglobulin a production in mice. Bioscience, Biotechnology, and Biochemistry, 73(3), pp. 677-682. DOI: https://doi.org/10.1271/ bbb.80733. Ishwarya, S. P., Sandhya, S., Nisha, P. 2021. Advances and prospects in the food applications of pectin hydrogels. Critical Reviews in Food Science and Nutrition, 62(16), pp. 4393-4417. DOI: https://doi.org/ 10.1080/10408398.2021.1875394. Islam, F., Wong, S. Y., Li, X., Arafat, M. T. 2022. Pectin and mucin modified cellulose-based superabsorbent hydrogel for controlled curcumin release. Cellulose, 29, pp. 5207-5222. DOI: https://doi.org/10.1007/ s10570-022-04600-y. Jiang, Z., Ngai, T. 2022. Recent advances in chemically modified cellulose and its derivatives for food packaging applications: A review. Polymers, 14(8). Article number: 1533. DOI: https://doi.org/10.3390/ polym14081533. Jora, F., Azhar, M., Nasra, E. 2021. Pengaruh penambahan prebiotik inulin dari bengkoang (Pachyrhizus erosus) terhadap organoleptik sinbiotik set yoghurt. Periodic, 10(1), pp. 12-16. DOI: https://doi.org/10.24036/ p.v10i1.110315. Juszczak, L., Witczak, T., Ziobro, R., Korus, J. et al. 2012. Effect of inulin on rheological and thermal properties of gluten-free dough. Carbohydrate Polymers, 90(1), pp. 353-360. DOI: https://doi.org/10.1016/ j.carbpol.2012.04.071. Kardamanidis, A., Misailidis, N., Da Gama Ferreira, R., Petrides, D. 2024. Inulin production from chicory roots. process modeling and cost analysis using SuperPro designer. URL: https://www.researchgate.net/publication/378141057_Inulin_Production_from_Chicory_Roots_-_Process_ Modeling_and_ Techno-Economic_Assessment_TEA_using_SuperPro_Designer? channel=doi&linkId= 65c9431334bbff5ba7fe2e66&showFulltext=true. Kesharwani, S. S., Dachineni, R., Jayarama Bhat, G., Tummala, H. 2019. Hydrophobically modified inulin- based micelles: Transport mechanisms and drug delivery applications for breast cancer. Journal o f Drug Delivery Science and Technology, 54. Article number: 101254. DOI: https://doi.org/10.1016/jjddst.2019.101254. Kheto, A., Bist, Y., Awana, A., Kaur, S. et al. 2023. Utilization of inulin as a functional ingredient in food: Processing, physicochemical characteristics, food applications, and future research directions. Food ChemistryAdvances, 3. Article number: 100443. DOI: https://doi.org/10.1016/j.focha.2023.100443. 320
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz