Вестник МГТУ, 2025, Т. 28, № 2.

Бычкова Т. С. и др. Роль ферментов молочнокислых бактерий в формировании антиоксидантного. Juraškova, D., Ribeiro, S. C., Silva, C. C. G. 2022. Exopolysaccharides produced by lactic acid bacteria: From biosynthesis to health-promoting properties. Foods, 11(2), pp. 156. DOI: https://doi.org/10.3390/foods11020156. PMID: 35053888; PMCID: PMC8774684. Kalantzopoulos, G., Tsakalidou, E., Manolopoulou, E. 1990. Proteinase, peptidase and esterase activities of cell- free extracts from wild strains of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus salivarius subsp. thermophilus isolated from traditional Greek yogurt. Journal o f Dairy Research, 57(4), pp. 593-601. DOI: https://doi.org/10.1017/s0022029900029642. Kandler, O. 1983. Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek, 49, pp. 209-224. URL : https://link.springer.com/article/10.1007/BF00399499. Kong, L., Xiong, Z., Song, X., Xia, Y. et al. 2020. Enhanced antioxidant activity in Streptococcus thermophilus by high-level expression of superoxide dismutase. Frontiers in Microbiology, 11. Article number: 579804. DOI: https://doi.org/10.3389/fmicb.2020.579804. Kunji, E. R. S., Mierau, I., Hagting, A., Poolman, B. et al. 1996. The proteolytic systems of lactic acid bacteria. Antonie van Leeuwenhoek, 70, pp. 187-221. DOI: https://doi.org 10.1007/BF00395933. Laloi, P., Atlan, D., Blanc, B., Gilbert, C. et al. 1991. Cell-wall-associated proteinase of Lactobacillus delbrueckii subsp. Bulgaricus CNRZ 397: Differential extraction, purification and properties of the enzyme. Applied Microbiology and Biotechnology, 36, pp. 196-204. DOI: https://doi.org/10.1007/BF00164419. Liu, Y., Nawazish, H., Farid, M. S., Abdul Qadoos, K. et al. 2024. Health-promoting effects of Lactobacillus acidophilus and its technological applications in fermented food products and beverages. Fermentation, 10(8). Article number: 380. DOI: https://doi.org/10.3390/fermentation10080380. Marshall, V. M., Cole, W. M. 1983. Threonine aldolase and alcohol dehydrogenase activities in Lactobacillus bulgaricus and Lactobacillus acidophilus and their contribution to flavour production in fermented milks. Journal o fDairy Research, 50(3), pp. 375-379. DOI: https://doi.org/10.1017/s0022029900023219. Padghan, P. V., Mann, B., Hati, S. 2018. Purification and characterization of antioxidative peptides derived from fermented milk (Lassi) by lactic cultures. International Journal o f Peptide Research and Therapeutics, 24, pp. 235-249. DOI: https://doi.org/10.1007/s10989-017-9608-2. Panchal, G., Sakure, A., Hati, S. 2022. Peptidomic profiling of fermented goat milk: Considering the fermentation­ time dependent proteolysis by Lactobacillus and characterization of novel peptides with antioxidative activity. Journal o f Food Science and Technology, 59, pp. 2295-2305. DOI: https://doi.org/10.1007/s13197- 021-05243-w. Park, J., Hirano, J.-I., Thangavel, V., Riebel, B. et al. 2011. NAD(P)H oxidase V from Lactobacillus plantarum (NoxV) displays enhanced operational stability even in absence of reducing agents. Journal o f Molecular CatalysisB: Enzymatic, 71, pp. 159-165. DOI: https://doi.org 10.1016/j.molcatb.2011.04.013. Roux, E., Nicolas, A., Valence, F., Siekaniec, G. et al. 2022. The genomic basis of the Streptococcus thermophiles health-promoting properties. BMC Genomics, 23. Article number: 210. DOI: https://doi.org/10.1186/s12864- 022-08459-y. Russo Krauss, I., Merlino, A., Pica, A., Rullo, R. et al. 2015. Fine tuning of metal-specific activity in the Mn-like group of cambialistic superoxide dismutases. RSC Advances, 5, pp. 87876-87887. DOI: https://doi.org/ 10.1039/c5ra13559a. Sasaki, M., Bosman, B. W., Tan, P. S. T. 1995. Comparison of proteolytic activities in various lactobacilli. Journal o fDairy Research, 62(4), pp. 601-610. DOI: https://doi.org/10.1017/s0022029900031332. Savaiano, D. A. 2014. Lactose digestion from yogurt: Mechanism and relevance. The American Journal o f Clinical Nutrition, 99(5), pp. 1251-1256. DOI: https://doi.org/10.3945/ajcn.113.073023. Savijoki, K., Ingmer, H., Varmanen, P. 2006. Proteolytic systems of lactic acid bacteria. Applied Microbiology and Biotechnology, 71, pp. 394-406. DOI : https://doi.org/10.1007/s00253-006-0427-1. Serata, M., Yasuda, E., Sako, T. 2018. Effect of superoxide dismutase and manganese on superoxide tolerance in Lactobacillus casei strain Shirota and analysis of multiple manganese transporters. Bioscience o fMicrobiota, Food and Health, 37(2), pp. 31-38. DOI: https://doi.org/10.12938/bmfh.17-018. Shuang, Z., Yan, Z., Meng, L., Xue, L. et al. 2019. The effect of Lactobacillus delbrueckii subsp bulgaricus proteinase on properties of milk gel acidified with glucono-5-lactone. International Journal o f Food Science and Technology, 54(6), pp. 2094-2100. DOI: https://doi.org/10.1111/ijfs.14113. Stratton, J. E., Hutkins, R. W., Taylor, S. L. 1991. Biogenic amines in cheese and other fermented foods: A Review. Journal o fFood Protection, 54.1, pp. 460-470. DOI: https://doi.org/10.4315/0362-028X-54.6.460. Vasudha, M., Prashantkumar, C. S., Bellurkar, M., Kaveeshwar, V. et al. 2023. Probiotic potential of p-galactosidase- producing lactic acid bacteria from fermented milk and their molecular characterization. Biomed Rep., 18(3), pp. 23. DOI: https://doi.org 10.3892/br.2023.1605. PMID: 36846619; PMCID: PMC9945298. Wang, Y., Li, H., Li, T., He, H. et al. 2018. Cytoprotective effect of Streptococcus thermophiles against oxidative stress mediated by a novel peroxidase (EfeB). Journal o f Dairy Science, 101(8), pp. 6955-6963. DOI: https://doi.org/10.3168/jds.2018-14601. 310

RkJQdWJsaXNoZXIy MTUzNzYz