Вестник МГТУ, 2025, Т. 28, № 2.
Semenikhina, V. F., Rozhkova, I. V., Kharitonov, V. D., Raskoshnaya, T. A. 2010. Consortium of microorganisms consisting of Bifidobacterium bifidum 791, Bifidobacterium iongum b-379m, Lactobacillus acidophilus NK-1, Sterptococcus thermophilus 132 strains used for the production of fermented dairy products, Russian Federation, Pat. 2454460. (In Russ.) Rozhkova, I. V. 2020. Kefir - probiotic. Actual issues o f the dairy industry, intersectoral technologies and quality management systems, 1(1(1)), pp. 451-456. DOI: https://doi.org/10.37442/978-5-6043854-1-8-2020- 1-451-456. EDN: VRYYRS. (In Russ.) Semenikhina, V. F., Rozhkova, I. V., Begunova, A. V. 2009. Technological aspects of the use of bifidobacteria in the production of fermented dairy products. Dairy Industry, 12, pp. 9-11. EDN: KZQJTF. (In Russ.) Semenikhina, V. F., Rozhkova, I. V., Begunova, A. V., Fedorova, T. V. et al. 2018. Development of biotechnology of a fermented milk product with Lactobacillus reuteri LR1 and investigation of its functional properties in vivo and in vitro experiment. Problems o f Nutrition, 87(5), pp. 52-62. DOI: https://doi.org/10.24411/0042- 8833-2018-10053. EDN: YPMKRN. (In Russ.) Semenikhina, V. F., Rozhkova, I. V., Raskoshnaya, T. A., Begunova, A. V. et al. 2016. Development of bacterial concentrates with probiotic microorganisms and fermented milk products using them. In Innovative technologies for fortification o f dairy products (theory and practice), pp. 88-109. Moscow. EDN: WEHNMV. (In Russ.) Fedorova, T. V., Vasina, D. V., Begunova, A. V., Rozhkova, I. V. et al. 2018. Antagonistic activity of lactic acid bacteria Lactobacillus spp. concerning clinical isolates of Klebsiella pneumonia. Applied Biochemistry and Microbiology, 54(3), pp. 264-276. DOI: https://doi.org/10.7868/s0555109918030054. EDN : XOTZPV. ( In Russ.) Chandra, P., Enespa Singh, R., Arora, P. K. 2020. Microbial lipases and their industrial applications: A comprehensive review. Microbial Cell Factories, 19. Article number: 169. DOI: https://doi.org/10.1186/ s12934-020-01428-8. Collins, Y. F., McSweeney, P. L. H., Wilkinson, M. G. 2003. Lipolysis and free fatty acid catabolism in cheese: A review of current knowledge. International Dairy Journal, 13(11), pp. 841-866. DOI: https://doi.org/ 10.1016/S0958-6946(03)00109-2. Cruz-Casas, D. E., Chavez-Garda, S. N., Garria-Flores, L. A., Martmez-Medina, G. A. et al. 2023. Bioactive peptides from fermented milk products. In Foundations and Frontiers in Enzymology. Enzymes beyond Traditional Applications in Dairy Science and Technology. Eds.: Y. S. Rajput, R. Sharma, pp. 289-311. DOI: https://doi.org/10.1016/B978-0-323-96010-6.00010-2. (Chapter 10). Dayara Alvarez-Rosales, J., Ozuna, C., Salcedo-Hernandez, R., Rodriguez-Hernandez, G. 2020. Comparison of antioxidant activity of cow and goat milk during fermentation with Lactobacillus acidophilus LA-5. In Prebiotics and Probiotics - Potential Benefits in Nutrition and Health. Eds.: E. Franco-Robles, J. Ramirez- Emiliano. DOI: https://doi.org/10.5772/intechopen.8821. De Vendittis, A., Marco, S., Di Maro, A., Chambery, A. et al. 2012. Properties of a putative cambialistic superoxide dismutase from the aerotolerant bacterium Streptococcus thermophilus strain LMG 18311. Protein & Peptide Letters, 19(3), pp. 333-344. DOI: https://doi.org/10.2174/092986612799363127. Donkor, O. N., Henriksson, A., Vasiljevic, T., Shah, N. P. 2007. Proteolytic activity of dairy lactic acid bacteria and probiotics as determinant of growth and in vitro angiotensin - converting enzyme inhibitory activity in fermented milk. Lait, 87(1), pp. 21-38. DOI: https://doi.org/10.1051/lait:2006023. Evert, J. L., Oscar, P. K., Willem, M. V. 1998. Regulation of the carbohydrate metabolism in Lactococcus lactis and other lactic acid bacteria. Lait, 78, pp. 69-76. URL : https://lait.dairy-journal.org/articles/lait/abs/1998/01/ lait_78_1998_1_9/lait_78_1998_1_9.html. Farhangi, M. A., Javid, A. Z., Dehghan, P. 2016. The effect of enriched chicory inulin on liver enzymes, calcium homeostasis and hematological parameters in patients with type 2 diabetes mellitus: A randomized placebo- controlled trial. Primary Care Diabetes, 10(4), pp. 265-271. DOI: https://doi.org/10.1016/j.pcd.2015.10.009. Feng, T., Wang, J. 2020. Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: A systematic review. Gut Microbes, 12(1). Article number: 1801944. DOI: https://doi.org/10.1080/ 19490976.2020.1801944. Gottschalk, G. 1986. Bacterial metabolism. Springer New York, NY. DOI: https://doi.org/10.1007/978-1-4612- 1072-6. (Springer Series in Microbiology). Holzapfel, W. 2002. Appropriate starter culture technologies for small-scale fermentation in developing countries. International Journal o f Food Microbiology, 75, pp. 197-212. DOI : https://doi.org/10.1016/ S0168-1605(01)00707-3. Iyer, R., Tomar, S. K., Maheswari, T. U., Singh, R. 2010. Streptococcus thermophilus strains: Multifunctional lactic acid bacteria. International Dairy Journal, 20(3), pp. 133-141. DOI: https://doi.org/10.1016/ j.idairyj.2009.10.005. Вестник МГТУ. 2025. Т. 28, № 2. С. 296-311. DOI: https://doi.org/10.21443/1560-9278-2025-28-2-296-311_ __________________________________________ 309
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz