Вестник МГТУ, 2025, Т. 28, № 2.
Бычкова Т. С. и др. Роль ферментов молочнокислых бактерий в формировании антиоксидантного. Padghan P. V., Mann B., Hati S. Purification and characterization of antioxidative peptides derived from fermented milk (Lassi) by lactic cultures // International Journal of Peptide Research and Therapeutics. 2018. Vol. 24. P. 235-249. DOI: https://doi.org/10.1007/s10989-017-9608-2. Panchal G., Sakure A., Hati S. Peptidomic profiling of fermented goat milk: Considering the fermentation-time dependent proteolysis by Lactobacillus and characterization of novel peptides with antioxidative activity // Journal of Food Science and Technology. 2022. Vol. 59. P. 2295-2305. DOI: https://doi.org/10.1007/ s13197-021-05243-w. Park J., Hirano J.-I., Thangavel V., Riebel B. [et al.]. NAD(P)H oxidase V from Lactobacillusplantarum (NoxV) displays enhanced operational stability even in absence of reducing agents // Journal of Molecular Catalysis B: Enzymatic. 2011. Vol. 71. P. 159-165. DOI: https://doi.org 10.1016/j.molcatb.2011.04.013. Roux E., Nicolas A., Valence F., Siekaniec G. [et al.]. The genomic basis of the Streptococcus thermophiles health-promoting properties // BMC Genomics. 2022. Vol. 23. Article number: 210. DOI: https://doi.org/ 10.1186/s12864-022-08459-y. Russo Krauss I., Merlino A., Pica A., Rullo R. [et al.]. Fine tuning of metal-specific activity in the Mn-like group of cambialistic superoxide dismutases // RSC Advances. 2015. N 5. P. 87876-87887. DOI: https://doi.org/ 10.1039/c5ra13559a. Sasaki M., Bosman B. W., Tan P. S. T. Comparison of proteolytic activities in various lactobacilli // Journal of Dairy Research. 1995. Vol. 62, Iss. 4. P. 601-610. DOI: https://doi.org/10.1017/s0022029900031332. Savaiano D. A. Lactose digestion from yogurt: Mechanism and relevance // The American Journal of Clinical Nutrition. 2014. Vol. 99, Iss. 5. P. 1251-1256. DOI: https://doi.org/10.3945/ajcn.113.073023. Savijoki K., Ingmer H., Varmanen P. Proteolytic systems of lactic acid bacteria // Applied Microbiology and Biotechnology. 2006. Vol. 71. P. 394-406. DOI : https://doi.org/10.1007/s00253-006-0427-1. Serata M., Yasuda E., Sako T. Effect of superoxide dismutase and manganese on superoxide tolerance in Lactobacillus casei strain Shirota and analysis of multiple manganese transporters // Bioscience of Microbiota, Food and Health. 2018. Vol. 37, Iss. 2. P. 31-38. DOI: https://doi.org/10.12938/bmfh.17-018. Shuang Z., Yan Z., Meng L., Xue L. [et al.]. The effect of Lactobacillus delbrueckii subsp bulgaricus proteinase on properties of milk gel acidified with glucono-5-lactone // International Journal of Food Science and Technology. 2019. Vol. 54, Iss. 6. P. 2094-2100. DOI: https://doi.org/10.1111/ijfs.14113. Stratton J. E., Hutkins R. W., Taylor S. L. Biogenic amines in cheese and other fermented foods: A Review // Journal of Food Protection. 1991. № 54.1. P. 460-470. DOI: https://doi.org/10.4315/0362-028X-54.6.460. Vasudha M., Prashantkumar C. S., Bellurkar M., Kaveeshwar V. [et al.]. Probiotic potential of p-galactosidase- producing lactic acid bacteria from fermented milk and their molecular characterization // Biomed Rep. 2023. Vol. 18, Iss. 3. P. 23. DOI: https://doi.org 10.3892/br.2023.1605. PMID: 36846619; PMCID: PMC9945298. Wang Y., Li H., Li T., He H. [et al.]. Cytoprotective effect of Streptococcus thermophiles against oxidative stress mediated by a novel peroxidase (EfeB) // Journal of Dairy Science. 2018. Vol. 101, Iss. 8. P. 6955 6963. DOI: https://doi.org/10.3168/jds.2018-14601. References Begunova, A. V., Rozhkova, I. V., Shirshova, T. I., Krysanova, Yu. I. 2020. Antimicrobial properties of Lactobacillus in fermented dairy products. Dairy Industry, 6, pp. 22-23. DOI: https://doi.org/10.31515/1019- 8946-2020-06-22-23. EDN: CTAQTN. (In Russ.) Biryuk, E. N., Furik, N. N., Astashonok, M. M. 2013. Breeding isolates of starter cultures of lactococci and thermophilic streptococcus by enzymatic activity. Proceedings of the XVI Intern. scientific and practical conf. Modern technologies o f agricultural production, Grodno, May 17, 2013. Grodno, pp. 7-9. EDN: JDHEAY. (In Russ.) Borovik, T. E., Ladodo, K. S., Zakharova, I. N., Roslavtseva, E. A. et al. 2014. Fermented dairy products in the diet of young children. Current Pediatrics, 13(1), pp. 89-95. EDN : RXPVPX. ( In Russ.) Galochkina, N. A., Glotova, I. A., Tolkacheva, A. A. 2024. Thermophilic streptococcus: Technological functionality in food systems, metabolic products beneficial to health, and species identification. Technologies o f the Food and Processing Industry o f the Agro-Industrial Complex - Healthy Food Products, 1, pp. 44-50. DOI: https://doi.org/10.24412/2311-6447-2024-1-44-50. EDN: VXYMUV. (In Russ.) Donskaya, G. A. 2020. Antioxidant properties of milk and dairy products: An overview. Food Industry , 12, pp. 86-91. DOI: https://doi.org/10.24411/0235-2486-2020-10150. EDN: XNCFER. (In Russ.) Zobkova, Z. S., Fursova, T. P., Zenina, D. V., Gavrilina, A. D. et al. 2019. Fermented milk products as a component of functional nutrition. Dairy Industry, 2, pp. 44-46. EDN : YYGBNJ. ( In Russ.) Kolmakova, T. S., Belik, S. N., Chistyakov, V. A., Morgul, E. V. et al. 2014. Characteristics of kefir as a valuable probiotic product and its biological properties. Medical Herald o f the South o f Russia, 3, pp. 35-42. EDN: RGDCDF. (In Russ.) 308
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz