Вестник МГТУ, 2025, Т. 28, № 2.
Вестник МГТУ. 2025. Т. 28, № 2. С. 296-311. DOI: https://doi.org/10.21443/1560-9278-2025-28-2-296-311 Collins Y. F., McSweeney P. L. H., Wilkinson M. G. Lipolysis and free fatty acid catabolism in cheese: A review of current knowledge // International Dairy Journal. 2003. Vol. 13, Iss. 11. P. 841-866. DOI: https://doi.org/10.1016/S0958-6946(03)00109-2. Cruz-Casas D. E., Chavez-Garria S. N., Garria-Flores L. A., Martinez-Medina G. A. [et al.]. Bioactive peptides from fermented milk products // Foundations and Frontiers in Enzymology. Enzymes beyond Traditional Applications in Dairy Science and Technology / eds.: Y. S. Rajput, R. Sharma. Academic Press, 2023. P. 289-311. DOI: https://doi.org/10.1016/B978-0-323-96010-6.00010-2. (Chapter 10). Dayara Alvarez-Rosales J., Ozuna C., Salcedo-Hernandez R., Rodriguez-Hernandez G. Comparison of antioxidant activity of cow and goat milk during fermentation with Lactobacillus acidophilus LA-5 // Prebiotics and Probiotics - Potential Benefits in Nutrition and Health / eds.: E. Franco-Robles, J. Ramirez-Emiliano. 2020. DOI: https://doi.org/10.5772/intechopen.8821. De Vendittis A., Marco S., Di Maro A., Chambery A. [et al.]. Properties of a putative cambialistic superoxide dismutase from the aerotolerant bacterium Streptococcus thermophilus strain LMG 18311 // Protein & Peptide Letters. 2012. Vol. 19, Iss. 3. P. 333-344. DOI: https://doi.org/10.2174/092986612799363127. Donkor O. N., Henriksson A., Vasiljevic T., Shah N. P. Proteolytic activity of dairy lactic acid bacteria and probiotics as determinant of growth and in vitro angiotensin - converting enzyme inhibitory activity in fermented milk // Lait. 2007. Vol. 87, N 1. P. 21-38. DOI: https://doi.org/10.1051/lait:2006023. Evert J. L., Oscar P. K., Willem M. V. Regulation of the carbohydrate metabolism in Lactococcus lactis and other lactic acid bacteria // Lait. 1998. Vol. 78. P. 69-76. URL : https://lait.dairy-journal.org/articles/lait/abs/ 1998/01/lait_78_1998_1_9/lait_78_1998_1_9.html. Farhangi M. A., Javid A. Z., Dehghan P. The effect of enriched chicory inulin on liver enzymes, calcium homeostasis and hematological parameters in patients with type 2 diabetes mellitus: A randomized placebo- controlled trial // Primary Care Diabetes. 2016. Vol. 10, Iss. 4. P. 265-271. DOI: https://doi.org/10.1016/ j.pcd.2015.10.009. Feng T., Wang J. Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: A systematic review // Gut Microbes. 2020. Vol. 12, Iss. 1. Article number: 1801944. DOI: https://doi.org/ 10.1080/19490976.2020.1801944. Gottschalk G. Bacterial metabolism. Springer New York, NY, 1986. DOI: https://doi.org/10.1007/978-1-4612- 1072-6. (Springer Series in Microbiology). Holzapfel W. Appropriate starter culture technologies for small-scale fermentation in developing countries // International journal of food microbiology. 2002. Vol. 75. P. 197-212. DOI : https://doi.org/10.1016/S0168- 1605(01)00707-3. Iyer R., Tomar S. K., Maheswari T. U., Singh R. Streptococcus thermophilus strains: Multifunctional lactic acid bacteria // International Dairy Journal. 2010. Vol. 20, Iss. 3. P. 133-141. DOI: https://doi.org/10.1016/ j.idairyj.2009.10.005. Juraškova D., Ribeiro S. C., Silva C. C. G. Exopolysaccharides produced by lactic acid bacteria: From biosynthesis to health-promoting properties // Foods. 2022. Vol. 11(2). P. 156. DOI: https://doi.org/10.3390/ foods11020156. PMID: 35053888; PMCID: PMC8774684. Kalantzopoulos G., Tsakalidou E., Manolopoulou E. Proteinase, peptidase and esterase activities of cell-free extracts from wild strains of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus salivarius subsp. thermophilus isolated from traditional Greek yogurt // Journal of Dairy Research. 1990. Vol. 57, Iss. 4. P. 593-601. DOI: https://doi.org/10.1017/s0022029900029642. Kandler O. Carbohydrate metabolism in lactic acid bacteria // Antonie van Leeuwenhoek. 1983. Vol. 49. P. 209-224. URL : https://link.springer.com/article/10.1007/BF00399499. Kong L., Xiong Z., Song X., Xia Y. [et al.]. Enhanced antioxidant activity in Streptococcus thermophilus by high-level expression of superoxide dismutase // Frontiers in Microbiology. 2020. Vol. 11. Article number: 579804. DOI: https://doi.org/10.3389/fmicb.2020.579804. Kunji E. R. S., Mierau I., Hagting A., Poolman B. [et al.]. The proteolytic systems of lactic acid bacteria // Antonie van Leeuwenhoek. 1996. Vol. 70. P. 187-221. DOI: https://doi.org 10.1007/BF00395933. Laloi P., Atlan D., Blanc B., Gilbert C. [et al.]. Cell-wall-associated proteinase of Lactobacillus delbrueckii subsp. Bulgaricus CNRZ 397: Differential extraction, purification and properties of the enzyme // Applied Microbiology and Biotechnology. 1991. Vol. 36. P. 196-204. DOI: https://doi.org/10.1007/BF00164419. Liu Y., Nawazish H., Farid M. S., Abdul Qadoos K. [et al.]. Health-promoting effects of Lactobacillus acidophilus and its technological applications in fermented food products and beverages // Fermentation. 2024. Vol. 10, Iss. 8. Article number: 380. DOI: https://doi.org/10.3390/fermentation10080380. Marshall V. M., Cole W. M. Threonine aldolase and alcohol dehydrogenase activities in Lactobacillus bulgaricus and Lactobacillus acidophilus and their contribution to flavour production in fermented milks // Journal of Dairy Research. 1983. Vol. 50, Iss. 3. P. 375-379. DOI: https://doi.org/10.1017/s0022029900023219. 307
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz