Вестник МГТУ, 2025, Т. 28, № 2.
Вестник МГТУ. 2025. Т. 28, № 2. С. 273-295. DOI: https://doi.org/10.21443/1560-9278-2025-28-2-273-295 Burak, L. Ch., Sapach, A. N. 2023. Biologically active substances of elderberry: Properties, methods of extraction and preservation. Food Systems, 6(1), pp. 80-94. DOI: https://doi.org/10.21323/2618-9771-2023- 6-1-80-94. EDN: BDOJAW. (In Russ.) = Бурак Л. Ч., Сапач А. Н. Биологически активные вещества бузины: свойства, методы извлечения и сохранения. Пищевые системы. 2023. Т. 6(1). С. 80-94. DOI: https://doi.org/10.21323/2618-9771-2023-6-1-80-94. EDN: BDOJAW. Burak, L. Ch., Sapach, A. N. 2024а. Use of omic heating technology in the process of processing fruits and vegetables. Overview of the subject field. Food systems, 7(1), pp. 59-70. DOI: https://doi.org/10.21323/ 2618-9771-2024-7-1-59-70. EDN: BKQTXQ. (In Russ.) = Бурак Л. Ч., Сапач А. Н. Использование технологии омического нагрева в процессе переработки плодов и овощей. Обзор предметного поля. Пищевые системы. 2024. Т. 7(1). С. 59-70. DOI : https://doi.org/10.21323/2618-9771-2024-7-1-59-70. EDN : BKQTXQ. Burak, L. Ch., Vostrikov, A. V. 2024б. Use of catalytic infrared radiation technology in the processing of fruit and vegetable raw materials. Review of the subject field. Scientific Review. Engineering Sciences, 4, pp. 2-34. DOI: https://doi.org/10.17513/srts.1479. EDN: BBQKMV. (In Russ.) = Бурак Л. Ч., Востриков А. В. Использование технологии каталитического инфракрасного излучения при переработке плодоовощного сырья. Обзор предметного поля. Научное обозрение. Технические науки. 2024. Т. 4. С. 2-34. DOI: https://doi.org/10.17513/srts.1479. E DN: BBQKMV. Chen, J., Venkitasamy, C., Shen, Q., McHugh, T. H. et al. 2018. Development of healthy crispy carrot snacks using sequential infrared blanching and hot air drying method. LWT, 97, pp. 469-475. DOI: https://doi.org/ 10.1016/j.lwt.2018.07.026. Chen, Q., Bi, J., Wu, X., Yi, J. et al. 2015. Drying kinetics and quality attributes of jujube (Zizyphus jujuba Miller) slices dried by hot-air and short- and medium-wave infrared radiation. LWT - Food Science and Technology, 64(2), pp. 759-766. DOI: https://doi.org/10.1016/j.lwt.2015.06.071. Chourio, A. M., Salais-Fierro, F., Mehmood, Z., Martinez-Monteagudo, S. I. et al. 2018. Inactivation of peroxidase and polyphenoloxidase in coconut water using pressure-assisted thermal processing. Innovative Food Science & Emerging Technologies, 49, pp. 41-50. DOI: https://doi.org/10.1016/j.ifset.2018.07.014. de Souza, J. V. B., Perazzini, H., Lima-Correa, R. A. B., Borel, L. D. M. S. 2024. Combined infrared-convective drying of banana: Energy and quality considerations. Thermal Science and Engineering Progress, 48. Article number: 102393. DOI: https://doi.org/10.1016/j.tsep.2024.102393. Dikec, J., Bechoua, N., Winckler, P., Perrier-Cornet, J. M. 2022. Effects of pulsed near infrared light (NIR) on Bacillus subtilis spores. Journal o f Photochemistry and Photobiology B: Biology, 234. Article number: 112530. DOI: https://doi.org/10.1016/j.jphotobiol.2022.112530. ElGamal, R., Song, C., Rayan, A. M., Liu, C. et al. 2023. Thermal degradation of bioactive compounds during drying process of horticultural and agronomic products: A comprehensive overview. Agronomy, 13. Article number: 1580. DOI: https://doi.org/10.3390/agronomy13061580. El-Mesery, H. S., Ashiagbor, K., Hu, Z., Alshaer, W. G. 2023. A novel infrared drying technique for processing of apple slices: Drying characteristics and quality attributes. Case Studies in Thermal Engineering , 52. Article number: 103676. DOI: https://doi.org/10.1016/j.csite.2023.103676. Faas, N., Rocker, B., Smrke, S., Yeretzian, C. et al. 2020. Prevention of lipid oxidation in linseed oil using a palladium-based oxygen scavenging film. Food Packaging and Shelf Life, 24. Article number: 100488. DOI: https://doi.org/10.1016/jipsl.2020.100488. Fayaz, U., Aga, M. B., Bashir, I., Bashir, O. et al. 2023. Applications of infrared processing in the food industry. In Emerging Thermal Processes in the Food Industry. Unit Operations and Processing Equipment in the Food Industry. Monograph. Ed.: S. M. Jafari. Woodhead Publishing, pp. 63-92. DOI: https://doi.org/ 10.1016/B978-0-12-822107-5.00003-9. Feng, S., Bi, J., Laaksonen, T., Lauren, P. et al. 2024. Texture of freeze-dried intact and restructured fruits: Formation mechanisms and control technologies. Trends in Food Science & Technology , 143. Article number: 104267. DOI: https://doi.org/10.1016/jiifs.2023.104267. Feng, Y., Wu, B., Yu, X., Yagoub, A. E. A. et al. 2018. Effect of catalytic infrared dry-blanching on the processing and quality characteristics of garlic slices. Food Chemistry, 266, pp. 309-316. DOI: https://doi.org/10.1016/j.foodchem.2018.06.012. Gaidhani, K. A., Harwalkar, M., Bhambere, D., Nirgude, P. S. 2015. Lyophilization/freeze drying - A review. World Journal o fPharmaceutical Research, 4(8), pp. 516-543. Ghaboos, S. H. H., Ardabili, S. M. S., Kashaninejad, M., Asadi, G. et al. 2016. Combined infrared-vacuum drying of pumpkin slices. Journal o fFood Science and Technology, 53, pp. 2380-2388. DOI: https://doi.org/ 10.1007/s13197-016-2212-1. Gu, C., Ma, H., Tuly, J. A., Guo, L. et al. 2022. Effects of catalytic infrared drying in combination with hot air drying and freeze drying on the drying characteristics and product quality of chives. LWT, 161. Article number: 113363. DOI: https://doi.org/10.1016/jiwt.2022.113363. 291
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz