Вестник МГТУ, 2024, Т. 27, № 4.

Давыдов А. Е. и др. Расширение диапазона двухзонного управления синхронным двигателем. complexes and systems. In 2 Vol., Ufa, 2022. Vol. 1, pp. 235-243. URL: https://www.ugatu.su/media/ uploads/MainSite/0b%20 universitete/Izdateli/El_izd/2022-219.pdf. Joshi, D., Deb, D., Muyeen, S. M. 2022. Comprehensive review on electric propulsion system of unmanned aerial vehicles. Frontiers in Energy Research. Article number: 10:752012. DOI: https://doi.org/10.3389/ fenrg.2022.752012. Kolano, K. 2023. New method of vector control in PMSM motors. IEEE Access, 11, pp. 43882-43890. DOI: https://doi.org/10.1109/access.2023.3272273. Kotin, D., Pankrats, Y., Davydov, A., Ivanov, I. 2023. Dual-zone control o f the traction permanent magnet synchronous motor in the unmanned aerial vehicle. International Journal o f Advanced Technology and Engineering Exploration, 10(105), pp. 1093-1102. DOI: https://doi.org/10.19101/ijatee.2022.10100564. Lee, S. G., Bae, J., Kim, W.-H. 2018. A study on the maximum flux linkage and the goodness factor for the spoke-type PMSM. IEEE Transactions on Applied Superconductivity , 28(3). Article number: 5200705. DOI: https://doi.org/10.1109/tasc.2017.2775561. Li, C., Kou, B. 2012. Research on a permanent magnet synchronous motor with parted permanent magnet used for spindle. 16th International Symposium on Electromagnetic Launch Technology, Beijing, China, 2012, pp. 1-4. DOI: https://doi.org/10.1109/eml.2012.6325049. Xu, X., Novotny, D. W. 1992. Selection of the flux reference for induction machine drives in the field weakening region. IEEE Transactions on Industry Applications, 28(6), pp. 1353-1358. DOI: https://doi.org/ 10.1109/28.175288. Yu, Y., Cong, L., Tian, X., Mi, Z. et al. 2020. A stator current vector orientation based multi-objective integrative suppressions of flexible load vibration and torque ripple for PMSM considering electrical loss. CES Transactions on Electrical Machines and Systems, 4(3), pp. 161-171. DOI: https://doi.org/10.30941/ cestems. 2020 . 00021 . Zhang, Y., Qi, R. 2022. Flux-weakening drive for IPMSM based on model predictive control. Energies, 15(7). Article number: 2543. DOI : https://doi.org/10.3390/en15072543. Сведения об авторах Давыдов Артем Евгеньевич - пр. К. Маркса, 20, г. Новосибирск, Россия, 630073; Новосибирский государственный технический университет, аспирант; e-mail: nobody.one911@icloud.com, ORCID: https://orcid.org/0000-0003-1912-9747 Artem E. Davydov - 20 K. Marksa Ave., Novosibirsk, Russia, 630073; Novosibirsk State Technical University, PhD Student; e-mail: nobody.one911@icloud.com, ORCID: https://orcid.org/0000-0003-1912-9747 Боченков Борис Михайлович - пр. К. Маркса, 20, г. Новосибирск, Россия, 630073; Новосибирский государственный технический университет, канд. техн. наук; e-mail: bochenkov@ngs.ru, ORCID: https://orcid.org/0009-0003-2382-9954 Boris M. Bochenkov - 20 K. Marksa Ave., Novosibirsk, Russia, 630073; Novosibirsk State Technical University, Cand. Sci. (Engineering); e-mail: bochenkov@ngs.ru, ORCID: https://orcid.org/0009-0003-2382-9954 Панкрац Юрий Витальевич - пр. К. Маркса, 20, г. Новосибирск, Россия, 630073; Новосибирский государственный технический университет, канд. техн. наук; e-mail: pankrats79@mail.ru, ORCID : https://orcid.org/0000-0003-3879-3029 Yuriy V. Pankrats - 20 K. Marksa Ave., Novosibirsk, Russia, 630073; Novosibirsk State Technical University, Cand. Sci. (Engineering); e-mail: pankrats79@mail.ru, ORCID: https://orcid.org/0000-0003-3879-3029 500

RkJQdWJsaXNoZXIy MTUzNzYz