Вестник МГТУ, 2024, Т. 27, № 1.

Вестник МГТУ. 2024. Т. 27, № 1. С. 61-66. DOI: https://doi.org/10 .21443/1560-9278-2024-27-1-61-66 Christensen U. R., J. Aubert J. Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields // Geophysical Journal International. 2006. Vol. 166, Iss. 1. P. 97­ 114. DOI: https://doi.org/10.1111/j .1365-246X.2006.03009.x. de Koker N., Steinle-Neumann G., Vlcek V. Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T , and heat flux in Earth's core // Proceedings of the National Academy of Sciences (PNAS). 2012. Vol. 109, Iss. 11. P. 4070-4073. DOI: https://doi.org/10.1073/pnas.1111841109. Gubbins D., Thomson C., Whaler K. Stable regions in the Earth's liquid core // Geophysical Journal International. 1982. Vol. 68, Iss. 1. P. 241-251. DOI: https://doi.org/10.1111/j.1365-246X.1982.tb06972.x. Gubbins D., Alfe D., Davies C., Pozzo M. On core convection and the geodynamo: Effects of high electrical and thermal conductivity // Physics of the Earth and Planetary Interiors. 2015. V. 247. P. 56-64. DOI: https://doi.org/10.1016/j.pepi.2015.04.002. Reshetnyak M. Yu. Evolution of the inner core of the Earth: Consequences for geodynamo // Magnetohydrodynamics. 2019. Vol. 55. N 1/2. P. 175-183. DOI: https://doi.org/10.22364/mhd.55.1-2.21. Reshetnyak M. Yu. Mantle cooling regulation and ancient geomagnetic field // Russian Journal of Earth Sciences. 2022. Vol. 22. Article number: ES2006. DOI: https://doi.org/10.2205/2022es000797. EDN: MDPDCD. Reshetnyak M. Yu. Parametric thermal model for the evolution of the Earth // Astronomy Letters. 2021. Vol. 47, Iss. 7. P. 505-514. DOI: https://doi.org/10.1134/s1063773721070070. EDN: VETPNM. Roberts P. H., Jones C. A., Calderwood A. R. Energy fluxes and ohmic dissipation in the Earth's core // Earth's core and lower mantle. Ed. Jones C. A. London : CRC Press, 2003. DOI: https://doi.org/10.1201/ 9 780203207611. Schubert G., Turcotte D. L., Olson P. Mantle convection in the Earth and planets. Cambridge University Press, 2001. DOI: https://doi.org/10.1017/CBO9780511612879. Stevenson D. J., Spohn T., Schubert G. Magnetism and thermal evolution of the terrestrial planets // Icarus. 1983. Vol. 54, Iss. 3. P. 466-489. DOI: https://doi.org/10.1016/0019-1035(83)90241-5. Tarduno J. A., Cottrell R. D., Bono R. K., Oda H. [et al.]. Paleomagnetism indicates that primary magnetite in zircon records a strong Hadean geodynamo // Proceedings of the National Academy of Sciences (PNAS). 2020. Vol. 117, Iss. 5. P. 2309-2318. DOI: 10.1073/pnas.1916553117. Wicht J., Sanchez S. Advances in geodynamo modelling // Geophysical & Astrophysical Fluid Dynamics. 2019. Vol. 113, Iss. 1-2. P. 2-50. DOI: https://doi.org/10.1080/03091929.2019.1597074. References Reshetnyak, M. Yu. 2021. Parametric thermal model of the evolution of the Earth. Pis'ma v Astronomicheskiy zhurnal , 47(7), pp. 525-534. DOI: https://doi.org/10.31857/s032001082107007x. EDN: KZFOSQ. (In Russ.) Aubert, J., Labrosse, S., Poitou, C. 2009. Modelling the palaeo-evolution of the geodynamo. Geophysical Journal International, 179(3), pp. 1414-1428. DOI: https://doi.org/10.1111/j.1365-246X.2009.04361.x. Christensen, U. R., J. Aubert, J. 2006. Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophysical Journal International, 166(1), pp. 97-114. DOI: https://doi.org/10.1111/j.1365-246X.2006.03009.x. de Koker, N., Steinle-Neumann, G., Vlcek, V. 2012. Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T, and heat flux in Earth's core. Proceedings o f the National Academy o f Sciences (PNAS), 109(11), pp. 4070-4073. DOI: https://doi.org/10.1073/pnas.1111841109. Gubbins, D., Thomson, C., Whaler, K. 1982. Stable regions in the Earth's liquid core. Geophysical Journal International , 68(1), pp. 241-251. DOI: https://doi.org/10.1111/j.1365-246X.1982.tb06972.x. Gubbins, D., Alfe, D., Davies, C., Pozzo, M. 2015. On core convection and the geodynamo: Effects of high electrical and thermal conductivity. Physics o f the Earth and Planetary Interiors, 247, pp. 56-64. DOI: https://doi.org/10.1016Zj.pepi.2015.04.002. Reshetnyak, M. Yu. 2019. Evolution of the inner core of the Earth: Consequences for geodynamo. Magnetohydrodynamics, 55(1/2), pp. 175-183. DOI: https://doi.org/10.22364/mhd.55.1-2.21. Reshetnyak, M. Yu. 2022. Mantle cooling regulation and ancient geomagnetic field. Russian Journal o f Earth Sciences, 22. Article number: ES2006. DOI: https://doi.org/10.2205/2022es000797. EDN: MDPDCD. Reshetnyak, M. Yu. 2021. Parametric thermal model for the evolution of the Earth. Astronomy Letters, 47(7), pp. 505-514. DOI: https://doi.org/10.1134/s1063773721070070. EDN: VETPNM. Roberts, P. H., Jones, C. A., Calderwood, A. R. 2003. Energy fluxes and ohmic dissipation in the Earth's core. In Earth's core and lower mantle. Ed. Jones C. A. London : CRC Press. DOI : https://doi.org/10.1201/ 9 780203207611. Schubert, G., Turcotte, D. L., Olson, P. 2001. Mantle convection in the Earth and planets. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511612879. Stevenson, D. J., Spohn, T., Schubert, G. 1983. Magnetism and thermal evolution o f the terrestrial planets. Icarus , 54(3), pp. 466-489. DOI: https://doi.org/10.1016/0019-1035(83)90241-5. 65

RkJQdWJsaXNoZXIy MTUzNzYz