Вестник МГТУ, 2024, Т. 27, № 1.

Вестник МГТУ. 2024. Т. 27, № 1. С. 103-112. DOI: https://doi.org/10 .21443/1560-9278-2024-27-1-103-112 Fuchs S., Schutz F., Forster H.-J., Forster A. Evaluation of common mixing models for calculating bulk thermal conductivity o f sedimentary rocks: Сorrection charts and new conversion equations // Geothermics. 2013. Vol. 47. P. 40-52. DOI: https://doi.org/10.1016/j.geothermics.2013.02.002. Goncharenko A. V., Lozovski V. Z., Venger E. F. Lichtenecker's equation: Applicability and limitations // Optics Communications. 2000. Vol. 174, Iss. 1-4. P. 19-32. DOI : https://doi.org/10.1016/S0030- 4018(99)00695-1. Guo P. Y., Zhang N., He M. C., Bai B. H. Effect of water saturation and temperature in the range of 193 to 373 K on the thermal conductivity o f sandstone // Tectonophysics. 2017. Vol. 699. P. 121-128. DOI: https://doi.org/10.1016/j.tecto.2017.01.024. Leao T. P., Perfect E., Tyner J. S. Evaluation o f Lichtenecker's mixing model for predicting effective permittivity o f soils at 50 MHz // Transactions of the ASABE. 2015. Vol. 58, Iss. 1. P. 83-91. DOI: https://doi.org/10.13031/trans.58.10720. Pechnig R., Mottaghy D., Koch A., Jorand R. [et al.]. Prediction of thermal properties for mesozoic rocks of Southern Germany // Proceedings European Geothermal Congress 2007. Unterhaching, Germany, 30 May - 1 June 2007. URL: https://pangea.stanford.edu/ERE/pdf/IGAstandard/EGC/2007/265.pdf. Popov Yu., Romushkevich R., Korobkov D., Mayr S. [et al.]. Thermal properties of rocks of the borehole Yaxcopoil-1 (Impact Crater Chicxulub, Mexico) // Geophysical Journal International. 2011. Vol. 184, Iss. 2. P. 729-745. DOI: https://doi.org/10.1111/j.1365-246X.2010.04839.x. Popov Yu., Tertychnyi V., Romushkevich R., Korobkov D. [et al.]. Interrelations between thermal conductivity and other physical properties of rocks: Experimental data // Pure and Applied Geophysics. 2003. Vol. 160. P. 1137-1161. DOI: https://doi.org/10.1007/pl00012565. Simpkin R. Derivation of Lichtenecker's logarithmic mixture formula from Maxwell's equations // IEEE Transactions on Microwave Theory and Techniques. 2010. Vol. 58, Iss. 3. P. 545-550. DOI: https://doi.org/10.1109/tmtt.2010.2040406. Zakri T., Laurent J.-P., Vauclin M. Theoretical evidence of Lichtenecker's mixture formulas based on the effective medium theory // Journal of Physics D: Applied Physics. 1998. Vol. 31, N 13. P. 1589-1594. DOI: https://doi.org/10.1088/0022-3727/31/13/013. Zhanga M., Bi J., Chen W., Zhang X. [et al.]. Evaluation of calculation models for the thermal conductivity of soils // International Communications in Heat and Mass Transfer. 2018. Vol. 94. P. 14-23. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2018.02.005. References Duchkov, A. D., Sokolova, L. S., Rodyakin, S. V., Chernysh, P. S. 2014. Thermal conductivity of the sedimentary-cover rocks of the West Siberian Plate in relation to their humidity and porosity. Russian Geology and Geophysics, 55(5-6), pp. 991-1000. DOI : http://dx.doi.org/10.15372/GiG20140520. EDN: SMXAZB. (In Russ.) Zverev, A. B. 1995. Results of in-situ studies of the stability of chamber structure in the underground nuclear power plant. Proceedings o f Intern. conf. Utilization o f countriy's underground space to increase nuclear power safety, October 20-22, 1992. Part 2. Apatity, pp. 150-163. (In Russ.) Novikov, S. V. 2009. Thermal properties of terrigenous reservoirs and saturating fluids. Ph.D. Thesis. Moscow. (In Russ.) Popov, E. Yu., Romushkevich, R. A. , Popov, Yu. A. 2017. Measurements of the rock thermal properties on the standard core plugs as a necessary stage of the thermal-physic investigations of the hydrocarbon fields. Proceedings o f Higher Educational Establishments. Geology and Exploration, 2, pp. 56-70. EDN: YUINNB. (In Russ.) Stolyarov, M. M., Popov, Yu. A., Tertuchny, V. V., Korobkov, D. A. 2007. Features of the method for determining the thermal conductivity of rocks based on the theoretical Lichtenecker - Asaad model. Proceedings o f higher educational establishments. Geology and Exploration, 5, pp. 69-72. EDN: LLZVFL. (In Russ.) Fuchs, S., Balling, N., Forster, A. 2015. Calculation of thermal conductivity, thermal diffusivity and specific heat capacity of sedimentary rocks using petrophysical well logs. Geophysical Journal International, 203(3), pp. 1977-2000. DOI: https://doi.org/10.1093/gji/ggv403. Fuchs, S., Schutz, F., Forster, H.-J., Forster, A. 2013. Evaluation of common mixing models for calculating bulk thermal conductivity o f sedimentary rocks: Сorrection charts and new conversion equations. Geothermics, 47, pp. 40-52. DOI: https://doi.org/10.1016/j.geothermics.2013.02.002. Goncharenko, A. V., Lozovski, V. Z., Venger, E. F. 2000. Lichtenecker's equation: Applicability and limitations. Optics Communications, 174(1-4), pp. 19-32. DOI : https://doi.org/10.1016/S0030-4018(99)00695-1. Guo, P. Y., Zhang, N., He, M. C., Bai, B. H. 2017. Effect of water saturation and temperature in the range o f 193 to 373 K on the thermal conductivity of sandstone. Tectonophysics, 699, pp. 121-128. DOI : https://doi.org/ 10.1016/j.tecto.2017.01.024. 111

RkJQdWJsaXNoZXIy MTUzNzYz