Вестник МГТУ, 2023, Т. 26, № 4.

Каночкина М. С. и др. Особенности подбора заквасочных культур. de Melo Pereira, G. V., de Carvalho Neto, D. P., Junqueira, A. C. D. O., Karp, S. G. et al. 2020. A review of selection criteria for starter culture development in the food fermentation industry. Food Reviews International, 36(2), pp. 135-167. DOI: https://doi.org/10.1080/87559129.2019.1630636. Frece, J., Cvrtila, J., Topic, I., Delaš, F. et al. 2014. Lactococcus lactis ssp. Lactis as potential functional starter culture. Food Technology andBiotechnology, 52(4), pp. 489-494. DOI: https://doi.org/10.17113/ftb.52.04.14.3794. Fusieger, A., Martins, M. C. F., de Freitas, R., Nero, L. A. et al. 2020. Technological properties of Lactococcus lactis subsp. lactis bv. diacetylactis obtained from dairy and non-dairy niches. Brazilian Journal o fMicrobiology, 51, pp. 313-321. DOI: https://doi.org/10.1007/s42770-019-00182-3. Goldstein, E. J., Tyrrell, K. L., Citron, D. M. 2015. Lactobacillus species: Taxonomic complexity and controversial susceptibilities. Clinical Infectious Diseases, 60(Suppl. 2), pp. S98-S107. DOI: https://doi.org/10.1093/cid/civ072. Gotoh, Y., Kita, K., Tanaka, K., Ishikawa, S. et al. 2021. Genome sequences of two strains of Lactococcus lactis subsp. cremoris with the same ancestry but a different capacity to produce exopolysaccharides. The Journal o f General andAppliedMicrobiology, 67(5), pp. 220-223. DOI: https://doi.org/10.2323/jgam.2021.03.001. Gu, Y., Li, X., Xiao, R., Dudu, O. E. et al. 2020. Impact of Lactobacillus paracasei IMC502 in coculture with traditional starters on volatile and non-volatile metabolite profiles in yogurt. Process Biochemistry, 99, pp. 61-69. DOI: https://doi.org/10.1016/j.procbio.2020.07.003. Hernandez-Parada, N., Gonzalez-Rios, O., Suarez-Quiroz, M. L., Hernandez-Estrada, Z. J. et al. 2023. Exploiting the native microorganisms from different food matrices to formulate starter cultures for sourdough bread production. Microorganisms, 11(1). Article number: 109. DOI: https://doi.org/10.3390/microorganisms11010109. Hidalgo-Cantabrana, C., Delgado, S., Ruiz, L., Ruas-Madiedo, P. et al. 2017. Bifidobacteria and their health- promoting effects. Microbiology Spectrum, 5(3). DOI: https://doi.org/10.1128/microbiolspec.BAD-0010-2016. Hill, C., Guarner, F., Reid, G., Gibson, G. R. et al. 2014. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), pp. 506-514. DOI: https://doi.org/ 10.1038/nrgastro.2014.66. Jia, R., Chen, H., Chen, H., Ding, W. 2016. Effects of fermentation with Lactobacillus rhamnosus GG on product quality and fatty acids of goat milk yogurt. Journal o f Dairy Science , 99(1), pp. 221-227. DOI: https://doi.org/10.3168/jds.2015-10114. Joshi, V. K. 2015. Indigenous fermented foods of South Asia. CRC Press. DOI: https://doi.org/10.1201/b19214. Kok, C. R., Hutkins, R. 2018. Yogurt and other fermented foods as sources of health-promoting bacteria. Nutrition Reviews, 76(Suppl. 1), pp. 4-15. DOI: https://doi.org/10.1093/nutrit/nuy056. Kort, R., Westerik, N., Mariela Serrano, L., Douillard, F. P. et al. 2015. A novel consortium of Lactobacillus rhamnosus and Streptococcus thermophilus for increased access to functional fermented foods. Microbial Cell Factories, 14. Article number: 195. DOI: https://doi.org/10.1186/s12934-015-0370-x. Li, S., Huang, R., Shah, N. P., Tao, X. et al. 2014. Antioxidant and antibacterial activities of exopolysaccharides from Bifidobacterium bifidum WBIN03 and Lactobacillus plantarum R315. Journal o f Dairy Science, 97(12), pp. 7334-7343. DOI: https://doi.org/10.3168/jds.2014-7912. Linares, D. M., Gomez, C., Renes, E., Fresno, J. M. et al. 2017. Lactic acid bacteria and bifidobacteria with potential to design natural biofunctional health-promoting dairy foods. Frontiers in Microbiology , 8. DOI: https://doi.org/10.3389/fmicb.2017.00846. Liu, G., Ren, G., Zhao, L., Cheng, L. et al. 2017. Antibacterial activity and mechanism of bifidocin A against Listeria monocytogenes. Food Control, 7, Part B, pp. 854-861. DOI: https://doi.org/10.1016/j.foodcont. 2016.09.036. Makino, S., Sato, A., Goto, A., Nakamura, M. et al. 2016. Enhanced natural killer cell activation by exopolysaccharides derived from yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. Journal o fDairy Science, 99(2), pp. 915-923. DOI: https://doi.org/10.3168/jds.2015-10376. Malaczewska, J., Kaczorek-Lukowska, E. 2021. Nisin-A lantibiotic with immunomodulatory properties: A review. Peptides, 137. Article number: 170479. DOI: https://doi.org/10.1016/j.peptides.2020.170479. Markowiak, P., Slizewska, K. 2017. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 9(9). Article number: 1021. DOI: https://doi.org/10.3390/nu9091021. Mills, S., Griffin, C., O'Connor, P. M., Serrano, L. M. et al. 2017. A multibacteriocin cheese starter system, comprising Nisin and Lacticin 3147 in Lactococcus lactis, in combination with Plantaricin from Lactobacillus plantarum. Applied and Environmental Microbiology, 83(14). DOI: https://doi.org/10.1128/AEM.00799-17. Mohammed, Y., Lee, B., Kang, Z., Du, G. 2014. Capability of Lactobacillus reuteri to produce an active form of Vitamin B 12 under optimized fermentation conditions. Journal o fAcademia and Industrial Research (JAIR), 2, pp. 617-621. Mokoena, M. P. 2017. Lactic acid bacteria and their bacteriocins: Classification, biosynthesis and applications against uropathogens: A mini-review. Molecules, 22(8). Article number: 1255. DOI: https://doi.org/10.3390/ molecules22081255. 526

RkJQdWJsaXNoZXIy MTUzNzYz