Вестник МГТУ, 2023, Т. 26, № 4.

Вестник МГТУ. 2023. Т. 26, № 4. С. 511-528. DOI: https://doi.org/10.21443/1560-9278-2023-26-4-511-528 References Artyukhova, S. I., Klyueva, K. V. 2015. Prospects for the development of domestic biologically active food additives based on consortia of lactic acid bacteria and bifidobacteria. Young Russia: Advanced Technologies - in Industry!, 3, pp. 208-212. EDN: UZEPEV. (In Russ.) Utebaeva, A. A., Burmasova, M. A., Sysoeva, M. A. 2016. Prospects for the use of bifidobacteria in functional nutrition products and medicines. Izvestiya Vuzov. Applied Chemistry and Biotechnology , 4(19), pp. 100-109. DOI: 10.21285/2227-2925-2016-6-4-100-109. EDN: XHYJGF. (In Russ.) Akabanda, F., Owusu-Kwarteng, J., Tano-Debrah, K., Parkouda, C. et al. 2014. The use of lactic acid bacteria starter culture in the production of Nunu, a spontaneously fermented milk product in Ghana. International Journal o fFood Science, 2014. Article number: 721067. DOI: https://doi.org/10.1155/2014/721067. Ansorena, D., Astiasaran, I. 2016. Fermented foods: Composition and health effects. Encyclopedia o f Food and Health , pp. 649-655. DOI: https://doi.org/10.1016/B978-0-12-384947-2.00285-3. Arques, J. L., Rodriguez, E., Langa, S., Landete, J. M. et al. 2015. Antimicrobial activity of lactic acid bacteria in dairy products and gut: Effect on pathogens. BioMedResearch International, 2015. Article number: 584183. DOI: https://doi.org/10.1155/2015/584183. Aunsbjerg, S. D., Honore, A. H., Marcussen, J., Ebrahimi, P. et al. 2015. Contribution of volatiles to the antifungal effect of Lactobacillus paracasei in defined medium and yogurt. International Journal o f Food Microbiology, 194, pp. 46-53. DOI: https://doi.org/10.1016/j.ijfoodmicro.2014.11.007. Ayivi, R. D., Ibrahim, S. A. 2022. Lactic acid bacteria: An essential probiotic and starter culture for the production of yoghurt. International Journal o f Food Science & Technology, 57(11), pp. 7008-7025. DOI: https://doi.org/10.1111/ijfs. 16076. Bai, Y., Luo, B., Zhang, Y., Li, X. et al. 2021. Exopolysaccharides produced by Pediococcus acidilactici MT41- 11 isolated from camel milk: Structural characteristics and bioactive properties. International Journal o f Biological Macromolecules, 185. P. 1036-1049. DOI: https://doi.org/10.1016/jijbiomac.2021.06.152. Belicova, A., Mikulašova, M., Dušinsky, R. 2013. Probiotic potential and safety properties of Lactobacillus plantarum from Slovak Bryndza cheese. BioMed Research International, 2013. Article number: 760298. DOI: https://doi.org/10.1155/2013/760298. Bintsis, T. 2018. Lactic acid bacteria as starter cultures: An update in their metabolism and genetics. AIMS Microbiology, 4(4), pp. 665-684. DOI: https://doi.org/10.3934/microbiol.2018.4.665. Capurso, L. 2019. Thirty years of Lactobacillus rhamnosus GG. A review. Journal o f Clinical Gastroenterology, 53, pp. S1-S41. DOI: https://doi.org/10.1097/MCG.0000000000001170. Casarotti, S. N., Monteiro, D. A., Moretti, M. M. S., Penna, A. L. B. 2014. Influence of the combination of probiotic cultures during fermentation and storage of fermented milk. Food Research International , 59, pp. 67-75. DOI: https://doi.org/10.1016/j.foodres.2014.01.068. Castro, J. M., Tornadijo, M. E., Fresno, J. M., Sandoval, H. 2015. Biocheese: A food probiotic carrier. BioMed Research International, 2015. Article number: 723056. DOI: https://doi.org/10.1155/2015/723056. Coelho, M. C., Malcata, F. X., Silva, C. C. G. 2022. Lactic acid bacteria in raw-milk cheeses: From starter cultures to probiotic functions. Foods, 11(15). Article number: 2276. DOI: https://doi.org/10.3390/foods11152276. Cui, Y., Wang, M., Zheng, Y., Miao, K. et al. 2021. The carbohydrate metabolism of Lactiplantibacillus plantarum. International Journal o f Molecular Sciences, 22(24). Article number: 13452. DOI: https://doi.org/10.3390/ ijms222413452. Dai, D. L. Y., Petersen, C., Hoskinson, C., Del Bel, K. L. et al. 2023. Breastfeeding enrichment of B. Longum subsp. Infantis mitigates the effect of antibiotics on the microbiota and childhood asthma risk. Med, 4(2), pp. 92-112.e5. DOI: https://doi.org/10.1016/j.medj.2022.12.002. Dal Bello, B., Cocolin, L., Zeppa, G., Field, D. et al. 2012. Technological characterization of bacteriocin producing Lactococcus lactis strains employed to control Listeria monocytogenes in cottage cheese. International Journal o fFood Microbiology, 153(1-2), pp. 58-65. DOI: https://doi.org/10.1016/jijfoodmicro.2011.10.016. Dan, T., Chen, H., Li, T., Tian, J. et al. 2019. Influence of Lactobacillus plantarum P-8 on fermented milk flavor and storage stability. Frontiers in Microbiology, 9. DOI: https://doi.org/10.3389/fmicb.2018.03133. Dan, T., Hu, H., Tian, J., He, B. et al. 2023. Influence of different ratios of Lactobacillus delbrueckii subsp. Bulgaricus and Streptococcus thermophilus on fermentation characteristics of yogurt. Molecules, 28(5). Article number: 2123. DOI: https://doi.org/10.3390/molecules28052123. de Almeida, J. d. S. O., Dias, C. O., Pinto, S. S., Pereira, L. C. et al. 2018. Probiotic mascarpone-type cheese: Characterisation and cell viability during storage and simulated gastrointestinal conditions. International Journal o fDairy Technology, 71(S1), pp. 195-203. DOI: https://doi.org/10.1111/1471-0307.12457. de Castilho, N. P. A., Nero, L. A., Todorov, S. D. 2019. Molecular screening of beneficial and safety determinants from bacteriocinogenic lactic acid bacteria isolated from Brazilian artisanal calabresa. Letters in Applied Microbiology, 69(3), pp. 204-211. DOI: https://doi.org/10.1111/lam.13194. 525

RkJQdWJsaXNoZXIy MTUzNzYz