Вестник МГТУ, 2023, Т. 26, № 4.

Вестник МГТУ. 2023. Т. 26, № 4. С. 511-528. DOI: https://doi.org/10.21443/1560-9278-2023-26-4-511-528 Jia R., Chen H., Chen H., Ding W. Effects of fermentation with Lactobacillus rhamnosus GG on product quality and fatty acids of goat milk yogurt // Journal of Dairy Science. 2016. Vol. 99, Iss. 1. P. 221-227. DOI: https://doi.org/10.3168/jds.2015-10114. Joshi V. K. Indigenous fermented foods of South Asia. CRC Press, 2015. DOI: https://doi.org/10.1201/b19214. Kok C. R., Hutkins R. Yogurt and other fermented foods as sources of health-promoting bacteria // Nutrition Reviews. 2018. Vol. 76, Iss. Suppl. 1. P. 4-15. DOI: https://doi.org/10.1093/nutrit/nuy056. Kort R., Westerik N., Mariela Serrano L., Douillard F. P. [et al.]. A novel consortium of Lactobacillus rhamnosus and Streptococcus thermophilus for increased access to functional fermented foods // Microbial Cell Factories. 2015. Vol. 14. Article number: 195. DOI: https://doi.org/10.1186/s12934-015-0370-x. Li S., Huang R., Shah N. P., Tao X. [et al.]. Antioxidant and antibacterial activities of exopolysaccharides from Bifidobacterium bifidum WBIN03 and Lactobacillus plantarum R315 // Journal of Dairy Science. 2014. Vol. 97, Iss. 12. P. 7334-7343. DOI: https://doi.org/10.3168/jds.2014-7912. Linares D. M., Gomez C., Renes E., Fresno J. M. [et al.]. Lactic acid bacteria and bifidobacteria with potential to design natural biofunctional health-promoting dairy foods // Frontiers in Microbiology. 2017. Vol. 8. DOI: https://doi.org/10.3389/fmicb.2017.00846. Liu G., Ren G., Zhao L., Cheng L. [et al.]. Antibacterial activity and mechanism of bifidocin A against Listeria monocytogenes // Food Control. 2017. Vol. 7, Part B. P. 854-861. DOI: https://doi.org/10.1016/j.foodcont. 2016.09.036. Makino S., Sato A., Goto A., Nakamura M. [et al.]. Enhanced natural killer cell activation by exopolysaccharides derived from yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 // Journal of Dairy Science. 2016. Vol. 99, Iss. 2. P. 915-923. DOI: https://doi.org/10.3168/jds.2015-10376. Malaczewska J., Kaczorek-Lukowska E. Nisin-A lantibiotic with immunomodulatory properties: A review // Peptides. 2021. Vol. 137. Article number: 170479. DOI: https://doi.org/10.1016/j.peptides.2020.170479. Markowiak P., Slizewska K. Effects of probiotics, prebiotics, and synbiotics on human health // Nutrients. 2017. Vol. 9, Iss. 9. Article number: 1021. DOI: https://doi.org/10.3390/nu9091021. Mills S., Griffin C., O'Connor P. M., Serrano L. M. [et al.]. A multibacteriocin cheese starter system, comprising Nisin and Lacticin 3147 in Lactococcus lactis, in combination with Plantaricin from Lactobacillus plantarum // Applied and Environmental Microbiology. 2017. Vol. 83, Iss. 14. DOI: https://doi.org/10.1128/AEM.00799-17. Mohammed Y., Lee B., Kang Z., Du G. Capability of Lactobacillus reuteri to produce an active form of Vitamin B12 under optimized fermentation conditions // Journal of Academia and Industrial Research (JAIR). 2014. Vol. 2. P. 617-621. Mokoena M. P. Lactic acid bacteria and their bacteriocins: Classification, biosynthesis and applications against uropathogens: A mini-review // Molecules. 2017. Vol. 22, Iss. 8. Article number: 1255. DOI: https://doi.org/ 10.3390/molecules22081255. Moser A., Schafroth K., Meile L., Egger L. [et al.]. Population dynamics of Lactobacillus helveticus in Swiss Gruyere-type cheese manufactured with natural whey cultures // Frontiers in Microbiology. 2018. Vol. 9. DOI: https://doi.org/10.3389/fmicb.2018.00637. Nagaoka S. Yogurt production // Lactic Acid Bacteria. Methods in Molecular Biology / eds.: M. Kanauchi. Vol. 1887. Humana Press, New York, NY, 2019. DOI: https://doi.org/10.1007/978-1-4939-8907-2_5. Noda M., Danshiitsoodol N., Sakaguchi T., Kanno K. [et al.]. Exopolysaccharide produced by plant-derived Lactobacillus plantarum SN35N exhibits antiviral activity // Biological and Pharmaceutical Bulletin. 2021. Vol. 44, Iss. 12. P. 1886-1890. DOI: https://doi.org/10.1248/bpb.b21-00517. Oh N. S., Joung J. Y., Lee J. Y., Kim S. H. [et al.]. Characterization of the microbial diversity and chemical composition of gouda cheese made by potential probiotic strains as an adjunct starter culture // Journal of Agricultural and Food Chemistry. 2016. Vol. 64, Iss. 39. P. 7357-7366. DOI: https://doi.org/10.1021/ acs.jafc.6b02689. Okubo R., Xiao J., Matsuoka Y. J. Potential beneficial effects of Bifidobacterium breve A1 on cognitive impairment and psychiatric disorders // The Neuroscience of Depression. Features, Diagnosis, and Treatment / eds.: C. R. Martin, L.-A. Hunter V. [et al.]. Academic Press, 2021. P. 497-504. DOI: https://doi.org/10.1016/ B978-0-12-817933-8.00040-2. Papademas P. Dairy microbiology. A practical approach. Boca Raton : CRC Press, 2014. DOI: https://doi.org/ 10.1201/b17915. Pimentel T. C., Garcia S., Prudencio S. H. Effect of long-chain inulin on the texture profile and survival of Lactobacillus paracasei spp parcasei in set yoghurts during refrigerated storage // International Journal of Dairy Technology. 2012. Vol. 65, Iss. 1. P. 104-110. DOI: https://doi.org/10.1111/j.1471-0307.2011.00739.x. Pompei A., Cordisco L., Amaretti A., Zanoni S. [et al.]. Folate production by bifidobacteria as a potential probiotic property // Applied and Environmental Microbiology. 2007. Vol. 73, Iss. 1. DOI: https://doi.org/10.1128/ AEM.01763-06. 523

RkJQdWJsaXNoZXIy MTUzNzYz