Вестник МГТУ, 2023, Т. 26, № 3.

Вестник МГТУ. 2023. Т. 26, № 3. С. 232-241. DOI: https://doi.org/10.21443/1560-9278-2023-26-3-232-241 Tucs A., Tran D. P., Yumoto A., Ito Y. [et al.]. Generating ampicillin-level antimicrobial peptides with activity- aware generative adversarial networks // ACS Omega. 2020. Vol. 5, Iss. 36. P. 22847-22851. DOI: https://doi.org/10.1021/acsomega.0c02088. Yan J., Cai J., Zhang B., Wang Y. [et al.]. Recent progress in the discovery and design of antimicrobial peptides using traditional machine learning and deep learning // Antibiotics. 2022. Vol. 11, Iss. 10. Article number: 1451. DOI: https://doi.org/10.33 90/antibiotics 11101451. Yang M., Tan M., Wu J., Chen Z. [et al.]. Prevalence, characteristics, and outcome o f cow’s milk protein allergy in Chinese infants: A population-based survey // Journal of Parenteral and Enteral Nutrition. 2019. Vol. 43, Iss. 6. P. 803-808. DOI: https://doi.org/10.1002/jpen.1472. Zhang S., Ma M., Shao Z., Zhang J. [et al.]. Structure and formation mechanism of antimicrobial peptides temporin B- and L-induced tubular membrane protrusion // International Journal of Molecular Sciences. 2021. Vol. 22, Iss. 20. Article number: 11015. DOI: https://doi.org/10.3390/ijms222011015. References Agarkova, E. Yu., Semipyatny, V. K. 2023. Development of the program for system analysis and selection of optimal enzyme preparations for the release o f bioactive peptides. Food Industry, 2, pp. 6-10. DOI: https://doi.org/10.52653/ppi.2023.2.2.001. EDN: RCWLJH. ( In Russ.) Zhamsaranova, S. D., Lebedeva, S. N., Bolkhonov, B. A., Sokolov, D. V. 2021. Enzymatic conversion of food protein and evaluation o f antioxidant activity of peptides. ESSUTM Bulletin, 4(83), pp. 5-14. DOI: https://doi.org/10.53980/24131997_2021_4_5. EDN: TNSCKR. (In Russ.) Sokolov, D. V., Bolkhonov, B. A., Zhamsaranova, S. D., Lebedeva, S. N. 2023. Enzymatic hydrolysis of soy protein. Food Processing: Techniques and Technology, 53(1), pp. 86-96 . DOI: https://doi.org/10.21603/ 2074-9414-2023-1-2418. EDN: DHXSAX. (In Russ.) Tikhonov, S. L. 2023. Investigation o f antiviral activity o f enzymatic hydrolysates of proteins with justification of the possibility of their use as part of specialized food products. Bulletin o f the South Ural State University. Series: Food and Biotechnology, 11(2), pp. 103-111. DOI: https://doi.org/10.14529/food230212. EDN: FNEJIN. (In Russ.) Bhattacharjya, S., Straus, S. K. 2020. Design, engineering and discovery of novel а -helical and p-boomerang antimicrobial peptides against drug resistant bacteria. International Journal o f Molecular Sciences , 21(16). Article number: 5773. DOI: https://doi.org/10.3390/ijms21165773. Blondelle, S. E., Houghten, R. A. 1992. Design of model amphipathic peptides having potent antimicrobial activities. Biochemistry, 31(50), pp. 12688-12694. DOI: https://doi.org/10.1021/bi00165a020. Chernukha, I. M., Mashentseva, N. G., Afanasev, D. A., Vostrikova, N. L. 2020. Biologically active peptides of meat and meat product proteins: A review. Part 2. Functionality of meat bioactive peptides. Theory and Practice o fMeat Processing, 5(2), pp. 12-19. DOI : https://doi.org/10.21323/2414-438X-2020-5-2-12-19. Dean, S. N., Walper, S. A. 2020. Variational autoencoder for generation of antimicrobial peptides. ACS Omega, 5(33), pp. 20746-20754. DOI: https://doi.org/10.1021/acsomega.0c00442. Durr, U. H. N., Sudheendra, U. S., Ramamoorthy, A. 2006. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1758(9), pp. 1408-1425. DOI: https://doi.org 10.1016/j.bbamem.2006.03.030. Flom, J. D., Sicherer, S. H. 2019. Epidemiology o f cow’s milk allergy. Nutrients, 11(5). Article number: 1051. DOI: https://doi.org/10.3390/nu11051051. Gaglione, R., Pizzo, E., Notomista, E., de la Fuente-Nunez, C. et al. 2020. Host defence cryptides from human apolipoproteins: Applications in medicinal chemistry. Current Topics in Medicinal Chemistry, 20(14), pp. 1324-1337. DOI: https://doi.org/10.2174/1568026620666200427091454. Ghimire, J., Guha, S., Nelson, B. J., Morici, L. A. et al. 2022. The remarkable innate resistance of burkholderia bacteria to cationic antimicrobial peptides: Insights into the mechanism o f AMP resistance. The Journal o f Membrane Biology , 255(4-5), pp. 503-511. DOI: https://doi.org/10.1007/s00232-022-00232-2. Hattori, M., Miyakawa, S., Ohama, Y., Kawamura, H. et al. 2004. Reduced immunogenicity o f p-lactoglobulin by conjugation with acidic oligosaccharides. Journal o fAgricultural and Food Chemistry, 52(14), pp. 4546-4553. DOI: https://doi.org/10.1021/jf0353887. Lee, E. Y., Wong, G. C. L., Ferguson, A. L. 2018. Machine learning-enabled discovery and design of membrane- active peptides. Bioorganic & Medicinal Chemistry, 26(10), pp. 2708-2718. DOI: https://doi.org/10.1016/ j.bmc.2017.07.012. Liu, S., Lin, Y., Liu, J., Chen, X. et al. 2022. Targeted modification and structure-activity study of GL-29, an analogue of the antimicrobial peptide Palustrin-2ISb. Antibiotics, 11(8). Article number: 1048. DOI: https://doi.org/10.33 90/antibiotics 11081048. Magana, M., Pushpanathan, M., Santos, A. L., Leanse, L. et al. 2020. The value of antimicrobial peptides in the age o f resistance. The Lancet Infectious Diseases, 20(9), pp. e216-e230. DOI: https://doi.org/10.1016/s1473- 3099(20)30327-3. 239

RkJQdWJsaXNoZXIy MTUzNzYz