Вестник МГТУ, 2023, Т. 26, № 3.

Мерзлякова Н. В. и др. Прогнозирование антимикробной активности пищевого пептида. Chernukha I. M., Mashentseva N. G., Afanasev D. A., Vostrikova N. L. Biologically active peptides of meat and meat product proteins: A review. Part 2. Functionality of meat bioactive peptides // Theory and practice of meat processing. 2020. Vol. 5, Iss. 2. P. 12-19. DOI : https://doi.org/10.21323/2414-438X-2020-5-2-12-19. Dean S. N., Walper S. A. Variational autoencoder for generation o f antimicrobial peptides // ACS Omega. 2020. Vol. 5, Iss. 33. P. 20746-20754. DOI: https://doi.org/10.1021/acsomega.0c00442. Durr U. H. N., Sudheendra U. S., Ramamoorthy A. LL-37, the only human member of the cathelicidin family of antimicrobial peptides // Biochimica et Biophysica Acta (BBA) - Biomembranes. 2006. Vol. 1758, Iss. 9. P. 1408-1425. DOI: https://doi.org 10.1016/j.bbamem.2006.03.030. Flom J. D., Sicherer S. H. Epidemiology o f cow’s milk allergy // Nutrients. 2019. Vol. 11, Iss. 5. Article number: 1051. DOI: https://doi.org/10.3390/nu11051051. Gaglione R., Pizzo E., Notomista E., de la Fuente-Nunez C. [et al.]. Host defence cryptides from human apolipoproteins: Applications in medicinal chemistry // Current Topics in Medicinal Chemistry. 2020. Vol. 20, Iss. 14. P. 1324-1337. DOI: https://doi.org/10.2174/1568026620666200427091454. Ghimire J., Guha S., Nelson B. J., Morici L. A. [et al.]. The remarkable innate resistance o f burkholderia bacteria to cationic antimicrobial peptides: Insights into the mechanism of AMP resistance // The Journal of Membrane Biology. 2022. Vol. 255, Iss. 4-5. P. 503-511. DOI: https://doi.org/10.1007/s00232-022-00232-2. Hattori M., Miyakawa S., Ohama Y., Kawamura H. [et al.]. Reduced immunogenicity of p-lactoglobulin by conjugation with acidic oligosaccharides // Journal of Agricultural and Food Chemistry. 2004. Vol. 52, Iss. 14. P. 4546-4553. DOI: https://doi.org/10.1021/jf0353887. Lee E. Y., Wong G. C. L., Ferguson A. L. Machine learning-enabled discovery and design of membrane-active peptides // Bioorganic & Medicinal Chemistry. 2018. Vol. 26, Iss. 10. P. 2708-2718. DOI: https://doi.org/ 10.1016/j.bmc.2017.07.012. Liu S., Lin Y., Liu J., Chen X. [et al.]. Targeted modification and structure-activity study of GL-29, an analogue of the antimicrobial peptide Palustrin-2ISb // Antibiotics. 2022. Vol. 11, Iss. 8. Article number: 1048. DOI: https://doi.org/10.3390/antibiotics11081048. Magana M., Pushpanathan M., Santos A. L., Leanse L. [et al.]. The value of antimicrobial peptides in the age of resistance // The Lancet Infectious Diseases. 2020. Vol. 20, Iss. 9. P. e216-e230. DOI: https://doi.org/ 10.1016/s1473-3099(20)30327-3. Mehta K., Sharma P., Mujawar S., Vyas A. Role of antimicrobial peptides in treatment and prevention of mycobacterium tuberculosis: A review // International Journal o f Peptide Research and Therapeutics. 2022. Vol. 28, Iss. 5. Article number: 132. DOI: https://doi.org/10.1007/s10989-022-10435-9. Mink C., Strandberg E., Wadhwani P., Melo M. N. [et al.]. Overlapping properties of the short membrane-active peptide BP100 with (i) polycationic TAT and (ii) а -helical magainin family peptides // Frontiers in Cellular and Infection Microbiology. 2021. Vol. 11. Article number: 609542. DOI: https://doi.org/10.3389/ fcimb.2021.609542. Mishra A. K., Choi J., Moon E., Baek K.-H. Tryptophan-rich and proline-rich antimicrobial peptides // Molecules. 2018. Vol. 23, Iss. 4. Article number: 815. DOI: https://doi.org/10.3390/molecules23040815. Moretta A., Scieuzo C., Petrone A. M., Salvia R. [et al.]. Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields // Frontiers in Cellular and Infection Microbiology. 2021. Vol. 11. Article number: 668632. DOI: https://doi.org/10.3389/fcimb.2021.668632. Peng S.-Y., You R.-I., Lai M.-J., Lin N.-T. [et al.]. Highly potent antimicrobial modified peptides derived from the Acinetobacter baumannii phage endolysin LysAB2 // Scientific Reports. 2017. Vol. 7. Article number: 11477. DOI: https://doi.org/10.1038/s41598-017-11832-7. Picariello G., Iacomino G., Mamone G., Ferranti P. [et al.]. Transport across Caco-2 monolayers of peptides arising from in vitro digestion o f bovine milk proteins // Food Chemistry. 2013. Vol. 139, Iss. 1-4. P. 203-212. DOI: https://doi.org/10.1016/j.foodchem.2013.01.063. Pino-Angeles A., Leveritt III J. M., Lazaridis T. Pore structure and synergy in antimicrobial peptides of the magainin family // PLOS Computational Biology. 2016. Vol. 12, Iss. 1. Article number: e1004570. DOI: https://doi.org/10.1371/journal.pcbi.1004570. Porto W. F., Irazazabal L., Alves E. S. F., Ribeiro S. M. In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design // Nature Communications. 2018. Vol. 9, Iss. 1. Article number: 1490. DOI: https://doi.org/10.1038/s41467-018-03746-3. Silva T., Gomes M. S. Immuno-stimulatory peptides as a potential adjunct therapy against intra-macrophagic pathogens // Molecules. 2017. Vol. 22, Iss. 8. Article number: 1297. DOI: https://doi.org/10.3390/ molecules22081297. Stelwagen K., Carpenter E., Haigh B., Hodgkinson A. [et al.]. Immune components of bovine colostrum and milk // Journal of Animal Science. 2009. Vol. 87, suppl_13. P. 3-9. DOI: https://doi.org/10.2527/jas.2008-1377. Travis S. M., Anderson N. N., Forsyth W. R., Espiritu C. Bactericidal activity of mammalian cathelicidin- derived peptides // Infection and Immunity. 2000. Vol. 68, Iss. 5. P. 2748-2755. DOI: https://doi.org/ 10.1128/iai.68.5.2748-2755.2000. 238

RkJQdWJsaXNoZXIy MTUzNzYz