Вестник МГТУ, 2023, Т. 26, № 1.
Васильева Ж. В. и др. Анализ неточностей и несоответствий в актуальной редакции стандарта. Al Horr Y., Arif M., Kaushik A., Mazroei A. [et al.]. Occupant productivity and office indoor environment quality: A review of the literature // Building and Environment. 2016b. Vol. 105, P. 369-389. DOI: https://doi.org/10.1016/j .buildenv.2016.06.001. Cox C. HOPE: Health optimisation protocol for energy-efficient buildings: Pre-normative and socio-economic research to create healthy and energy-efficient buildings. Netherlands : TNO : Delft, 2005. 16 p. DOI: 10.13140/RG.2.2.33658.80328. Fanger P. O. Thermal comfort. Analysis and applications in environmental engineering. Copenhagen : Danish Technical Press, 1970. Fanger P. O. Thermal Comfort. McGraw-Hill. NewYork, 1973. Fisk W. J. Health and productivity gains from better indoor environments and their relationship with building energy efficiency // Annual Review of Energy and the Environment. 2000. Vol. 25, Iss. 1. P. 537-566. DOI: https://doi.org/10.1146/annurev.energy.25.L537 . Frontczak M., Wargocki P. Literature survey on how different factors influence human comfort in indoor environments // Building and Environment. 2011. Vol. 46, Iss. 4. P. 922-937. DOI: https://doi.org/ 10.1016/j.buildenv.2010.10.021. Jia L.-R., Han J., Chen X., Li Q.-Y. [et al.]. Interaction between thermal comfort, indoor air quality and ventilation energy consumption of educational buildings: A comprehensive review // Buildings. 2021. Vol. 11, Iss. 12. Article number: 591. DOI: https://doi.org/10.3390/buildings11120591. Khan N., Su Y., Riffa S. B. A review on wind driven ventilation techniques // Energy and Buildings. 2008. Vol. 40, Iss. 8. P. 1586-1604. DOI: https://doi.org/10.1016/j.enbuild.2008.02.015 . Mendell M. J., Heath G. A. Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature // Indoor Air. 2005. Vol. 15, Iss. 1. P. 27-52. DOI: https://doi.org/10.1111/j .1600-0668.2004.00320.x. Oldewurtel F., Sturzenegger D., Morari M. Importance of occupancy information for building climate control // Applied Energy. 2013. Vol. 101. P. 521-532. DOI: https://doi.org/10.1016/j.apenergy.2012.06.014 . Olesen B.W. International standards for the indoor environment // Indoor Air. 2004. Vol. 14, Iss. S 7. P. 18-26. DOI: https://doi.org/10.1111/j .1600-0668.2004.00268.x. Paone A., Bacher J.-P. The impact of building occupant behavior on energy efficiency and methods to influence it: A review of the state of the art // Energies. 2018. Vol. 11, Iss. 4. Article number: 953. DOI: https://doi.org/10.3390/en11040953. Peng C., Yan D., Guo S., Hu S. [et al.]. Building energy use in China: Ceiling and scenario // Energy and Buildings. 2015. Vol. 102. P. 307-316. DOI: https://doi.org/10.1016/j.enbuild.2015.05.049. Šujanova P., Rychtarikova M., Mayor T. S., Hyder A. A healthy, energy-efficient and comfortable indoor environment, A review // Energies. 2019. Vol. 12, Iss. 8. Article number: 1414. DOI: https://doi.org/ 10.3390/en12081414. Wargockia P., Porras-Salazara J. A., Contreras-Espinoza S. The relationship between classroom temperature and children’s performance in school // Building and Environment. 2019. Vol. 157. P. 197-204. DOI: https://doi.org/10.1016/j.buildenv.2019.04.046. Wyon D. P. Indoor environmental effects on productivity // Proc. IAQ 96. Paths to Better Building Environments. Atlanta: ASHRAE, 1996. P. 5-15. References Huseynova, M. V. 2019. Feasibility study of group estimation of thermal comfort using Fanger’s theory applied to people with different working capabilities. Ekologiya cheloveka (Human Ecology), 26(4), pp. 60-64. DOI: https://doi.org/10.33396/1728-0869-2019-4-60-64 . EDN: ZDDDSP. (InRuss.) Dudarev, A. A., Sotnikov, A. G. 2013. Microclimatic comfort and air distribution: A few steps towards. Inzhenernye sistemy. AVOKSevero-zapad, 1, pp. 16-23. (InRuss.) Leksin, A. G., Evlampieva, M. N., Mineeva, N. I., Timoshenkova, E. V. 2014. The use of PMV and PPD indicators to predict the assessment by metro passengers of the degree of thermal comfort or discomfort in various temperature conditions. Gigiena i sanitariya, 93, pp. 45-48. EDN: SJSXQZ. (InRuss.) Prorokova, M. V. 2017. Improving the efficiency of energy-saving measures taking into account the comfort of the microclimate. Ph.D. Thesis. Ivanovo. (InRuss.) Spiridonov, A. V., Shubin, I. L., Malyavina, E. G., Samarin, O. D. 2016. Monitoring and analysis of regulatory documents in construction in the field of indoor climate and protection from harmful influences. Part 2. Temperature and humidity conditions and indoor air quality. BST: Byulleten' stroitel'noj tekhniki, 5(981), pp. 20-26. EDN: VUZWGP. (InRuss.) Usmonov, S. Z. 2015. On the need to determine optimal parameters for roomtemperature inbuilding regulations RT 23-02-2009 "Thermal protection of buildings" according to indices of thermal comfort PMV and PPD. Promyishlennoe i grazhdanskoe stroitelstvo , 1, pp. 54-57. EDN: TGOSDT. (InRuss.) 54
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz