Вестник МГТУ, 2023, Т. 26, № 1.

Вестник МГТУ. 2023. Т. 26, № 1. С. 25-44. DOI : https://doi.org/10 .21443/1560-9278-2023-26-1-25-44 Kuptsov, А. I., Akberov, R. R., Islamkhuzin, D. Ya., Gimranov, F. М. 2014. Numerical modeling of the boundary layer of the atmosphere taking into account its stratification. Fundamentalnye isledovaniya, 9-7, pp. 1452-1460. EDN : SWOHEJ. ( In Russ.) Lezhenin, А. А., Raputa, V. F., Yaroslavtseva, Т. V. 2016. Numerical analysis of atmospheric circulation and the spread of pollutants in the vicinity of the Norilsk industrial district. Atmospheric and Oceanic Optics , 29(6), pp. 467-471. DOI: https://doi.org/10.15372/aoo20160603. EDN : VZJPDL. ( In Russ.) Marchuk, G. I. 1982. Mathematical modeling in the problem of the environment. Moscow. (In Russ.) Methods of mathematical modeling in hydrodynamic problems of the environment. 1983. In coll. articles. Ed. V. V. Penenko. Novosibirsk. (In Russ.) Nazarchuk, О. V. 2021. Investigation of the process of atmospheric pollution of the open-pit space from point stationary sources under conditions of temperature inversion and calm. Problems o f Subsoil Use, 4(31), pp. 97-104. DOI : https://doi.org/10.25635/2313-1586.2021.04.097. E DN : QMDJEJ. ( In Russ.) Normalization of the atmosphere of deep open-pit. 1986. Eds. N. Z. Bitkolov, V. V. Penenko. Leningrad. (In Russ.) Penenko, V. V., Aloyan, А. Е. 1985. Models and methods for environmental protection tasks. Novosibirsk. (In Russ.) Raputa, V. F., Shlychkov, V. А., Lezhenin, А. А., Romanov, А. N. et al. 2014. Numerical analysis of aerosol impurity deposition data from a high-altitude source. Atmospheric and Oceanic Optics, 27(8), pp. 713-718. EDN : SMGMXX. ( In Russ.) Starchenko, А. V., Nuterman, R. B., Danilkin, Е. А. 2015. Numerical simulation of turbulent flows and impurity transport in street canyons. Tomsk. (In Russ.) Teodorovich, E. V. 1988. Phenomena of turbulent transport and the method of renormalization groups. Journal o fApplied Mathematics andMechanics, 52(2), pp. 218-224. (In Russ.) Shlychkov, V. А. 2005. Numerical model of the boundary layer of the atmosphere with details of convective processes based on the vortex-resolving approach. In coll. articles. Aerosols o f Siberia. Ed. К. P. Kutsebyj. Novosibirsk, pp. 372-389. (In Russ.) Shlychkov, V. А., Malbakhov, V. М., Lezhenin, А. А. 2005. Numerical simulation of atmospheric circulation and transport of pollutants in the Norilsk Valley. Atmospheric and Oceanic Optics, 18(5-6), pp. 490-496. EDN : HRPJCJ. ( In Russ.) Yastrebova, К. N. 2014. Simulation modeling of the process of flowing around the sides of an open mine by a natural wind flow. Occupational Safety in Industry, 8, pp. 60-62. EDN : SJSJOB. ( In Russ.) Alinot, C., Masson, C. 2002. Aerodynamic simulations of wind turbines operating in atmospheric boundary layer with various thermal stratifications. Proceedings of the ASME 2002 Wind Energy Symposium. ASME 2002 Wind Energy Symposium. January 14-17, 2002. Reno, Nevada, USA, pp. 206-215. DOI : https://doi.org/ 10.1115/WIND2002-42. Alinot, C., Masson, C. 2005. k-e model for the atmospheric boundary layer under various thermal stratifications. Journal o fSolar Energy Engineering, 127(4), pp. 438-443. DOI: https://doi.org/10.1115/1.2035704. Baklanov, A. 2000. Application of CFD methods for modelling in air pollution problems: Possibilities and gaps. EnvironmentalMonitoring andAssessment, 65(1-2), pp. 181-189. DOI: https://doi.org/10.1023/A:1006442514766. Baklanov, A., Burman, J., Naslund, E. 1997. Numerical modelling of three-dimensional flow and pollution transport over complex terrain. The PHOENICS Journal o f Computational Fluid Dynamics and its Applications , 10(1), pp. 57-86. Baklanov, A., Rigina, O. 1998. Environmental modeling of dusting from the mining and concentration sites in the Kola Peninsula, Northwest Russia. The XI World Clear Air and Environment Congress, 14-18 September 1998, Durban, South Africa, IUAPPA-NACA. Durban, Vol. 1, 4F-3, pp. 1-18. Balogh, M., Parente, A., Benocci, C. 2012. RANS simulation of ABL flow over complex terrains applying an enhanced k-e model and wall function formulation: Implementation and comparison for fluent and OpenFOAM. Journal o f Wind Engineering and Industrial Aerodynamics, 104-106, pp. 360-368. DOI: https://doi.org/10.1016/jjweia.2012.02.023. Blocken, B., Stathopoulos, T., Carmeliet, J. 2007. CFD simulation of the atmospheric boundary layer: Wall function problems. Atmospheric Environment, 41(2), pp. 238-252. DOI: https://doi.org/10.1016/ j.atmosenv.2006.08.019. Flores, F., Garreaud, R., Munoz, R. C. 2014. OpenFOAM applied to the CFD simulation of turbulent buoyant atmospheric flows and pollutant dispersion inside large open pit mines under intense insolation. Computers & Fluids, 90, pp. 72-87. DOI: https://doi.org/10.1016/j.compfluid.2013.11.012. Huang, Z., Ge, S., Jing, D., Yang, L. 2019. Numerical simulation of blasting dust pollution in open-pit mines. Applied Ecology and Environmental Research, 17(5), pp. 10313-10333. DOI: https://doi.org/10.15666/aeer/ 1705_1031310333. Khazins, V. M., Shuvalov, V. V., Soloviev, S. P. 2020. Numerical modeling of formation and rise of gas and dust cloud from large scale commercial blasting. Atmosphere, 11(10). Article number: 1112. DOI: https://doi.org/10.33 90/atmos11101112. 43

RkJQdWJsaXNoZXIy MTUzNzYz