Вестник МГТУ, 2022, Т.25, № 2.

Вокурова Д. А. и др. Влияние метода подготовки целлюлозосодержащего сорбента. Ivanova, V. N. 2008. State, problems and prospects for the development of the flax complex of Russia. Tekstilnaya promyshlennost, 1-2, pp. 37-41. EDN : KVJCQV. ( In Russ.) Kostochko, A. V., Shipina, A. T., Valishina, Z. T., Garaeva, M. P. et al. 2010. Obtaining and study the properties of cellulose from herbaceous plants. Vestnik Kazanskogo technologicheskogo universiteta, 9, pp. 267-275. EDN: MWNLBF. (In Russ.) Meretin, R. N., Nikiforova, Т. E. 2021. Investigation of the reactivity of the surface of a carbon-containing silicate sorbent of plant origin. ChemChemTech, 64(11), pp. 117-125. DOI : https://doi.org/10.6060/ ivkkt.20216411.6408. E DN: RPWWYR. (In Russ.) Nikiforova, Т. E. 2014. Physico-chemical bases of chemisorption of d-metal ions by modified cellulosic materials. Ph.D. Thesis. Ivanovo. (In Russ.) Nikiforova, T. E., Kozlov, V. A. 2016. Regularities of the effects of the nature of polysaccharide materials on distribution of heavy metal ions in a heterophase biosorbent - water solution system. Protection of Metals and Physical Chemistry o f Surfaces, 52(3), pp. 243-271. DOI: https://doi.org/10.7868/S0044185616030219. EDN: VYLZZD. (In Russ.) Abbar, B., Alem, A., Marcotte, S., Pantet, A. et al. 2017. Experimental investigation on removal of heavy metals (Cu2+, Pb2+, and Zn2+) from aqueous solution by flax fibres. Process Safety and Environmental Protection, 109, pp. 639-647. DOI: https://doi.org/10.1016/j.psep.2017.05.012. Abutaleb, A., Tayeb, A. M., Mahmoud, M. A., Daher, A. M. et al. 2020. Removal and recovery of U(VI) from aqueous effluents by flax fiber: Adsorption, desorption and batch adsorber proposal. Journal o f Advanced Research, 22, pp. 153-162. DOI: https://doi.org/10.1016/jjare.2019.10.011. Beni, A. A., Esmaeili, A. 2020. Biosorption, an efficient method for removing heavy metals from industrial effluents: A review. Environmental Technology & Innovation, 17. Article number: 100503. DOI: https://doi.org/10.1016/j.eti.2019.100503. Bhatnagar, A., Sillanpaa, M., Witek-Krowiak, A. 2015. Agricultural waste peels as versatile biomass for water purification - A review. Chemical Engineering Journal, 270, pp. 244-271. DOI: https://doi.org/10.1016/ j.cej.2015.01.135. Demirbas, А. 2008. Heavy metal adsorption onto agro-based waste materials: A review. Journal o f Hazardous Materials, 157(2-3), pp. 220-229. DOI: https://doi.org/10.1016/jjhazmat.2008.01.024. Dey, P., Mahapatra, B. S., Juyal, V. K., Pramanick, B. et al. 2021. Flax processing waste - A low-cost, potential biosorbent for treatment of heavy metal, dye and organic matter contaminated industrial wastewater. Industrial Crops andProducts, 174. Article number: 114195. DOI: https://doi.org/10.1016/j.indcrop.2021.114195. Duan, C., Ma, T., Wang, J., Zhou, Y. 2020. Removal of heavy metals from aqueous solution using carbon-based adsorbents: A review. Journal o f Water Process Engineering, 37. Article number: 101339. DOI: https://doi.org/10.1016/jjwpe.2020.101339. Irmak, S. 2017. Biomass as raw material for production of high-value products. I n Biomass Volume Estimation and Valorization fo r Energy. E d.: J. S. Tumuluru. IntechOpen London. DOI: https://doi.org/10.5772/65507. Jeevanantham, S., Saravanan, A., Hemavathy, R. V., Kumar, P. S. et al. 2019. Removal of toxic pollutants from water environment by phytoremediation: A survey on application and future prospects. Environmental Technology & Innovation, 13, pp. 264-276. DOI: https://doi.org/10.1016Zj.eti.2018.12.007. Joseph, L., Jun, B.-M., Flora, J. R. V., Park, C. M. et al. 2019. Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere, 229, pp. 142-159. DOI: https://doi.org/10.1016/j.chemosphere.2019.04.198. Kajeiou, M., Alem, A., Mezghich, S., Ahfir, N.-D. et al. 2020. Competitive and non-competitive zinc, copper and lead biosorption from aqueous solutions onto flax fibers. Chemosphere, 260, pp. 127505. DOI: https://doi.org/10.1016/j.chemosphere.2020. Article number: 127505. Kanamarlapudi, S., Chintalpudi, V. K., Muddada, S. 2018. Application of biosorption for removal of heavy metals from wastewater. In Biosorption. Eds.: J. Derco, B. Vrana. IntechOpen London. DOI : https://doi.org/ 10.5772/intechopen.77315. Kumar, R., Sharma, R. Kr., Singh, A. P. 2017. Cellulose based grafted biosorbents - Journey from lignocellulose biomass to toxic metal ions sorption applications - A review. Journal o fMolecular Liquids, 232, pp. 62-93. DOI: https://doi.org/10.1016/j.molliq.2017.02.050. Li, A., Lin, R., Lin, Ch., He, B. et al. 2016. An environment-friendly and multi-functional absorbent from chitosan for organic pollutants and heavy metal ion. Carbohydrate Polymers , 148, pp. 272-280. DOI: https://doi.org/10.1016/j.carbpol.2016.04.070. Lindholm-Lehto, P. C. 2019. Biosorption of heavy metals by lignocellulosic biomass and chemical analysis. BioResources, 14(2), pp. 4952-4995. DOI: 10.15376/biores.14.2.Lindholm-Lehto. Mishra, A., Clark, J. 2013. Greening the blue: How the world is addressing the challenge of green remediation of water. In Green Materials fo r Sustainable Water Remediation and Treatment. Eds.: A. Mishra, J. H. Clark. Royal Society of Chemistry, pp. 1-10. DOI : https://doi.org/10.1039/9781849735001-00001. 166

RkJQdWJsaXNoZXIy MTUzNzYz