Вестник МГТУ, 2022, Т.25, № 2.
Вестник МГТУ. 2022. Т. 25, № 3. С. 248-258. DOI: https://doi.org/10.21443/1560-9278-2022-25-3-248-258 Kambo N., Upadhyay S. Kinetic behavior of ascorbic acid - fructose browning reaction in alkaline medium // Indian Journal of Chemical Technology. 2012. Vol. 19, Iss. 2. P. 128-133. Koseki H., Akima C., Ohasi K., Sakai T. Effect of sugars on decomposition and browning of vitamin C during heating storage // Nippon Shokuhin Kagaku Kogaku Kaishi. 2001. Vol. 48, Iss. 4. P. 268-276. DOI: https://doi.org/10.3136/nskkk.48.268. Li M.-C., Wang W.-Y., Zhu W.-X., Ma C.-A. Electrocatalytic oxidation of ascorbic acid on a PPy-HEImTfa/Pt electrode and its mechanism // Acta Physico-Chimica Sinica. 2010. Vol. 26, Iss. 12. P. 3212-3216. DOI: https://doi.org/10.3866/PKU.WHXB20101218. Markarian S. A., Sargsyan H. R. Electronic absorption spectra of ascorbic acid in water and water- dialkylsulfoxide mixtures // Journal of Applied Spectroscopy. 2011. Vol. 78, Iss. 1. P. 6-10. DOI: https://doi.org/10.1007/s10812-011-9418-9. EDN: XMFETL. Rojas A. M., Gerschenson L. N. Ascorbic acid destruction in sweet aqueous model systems // LWT - Food Science and Technology. 1997а. Vol. 30, Iss. 6. P. 567-572. DOI: https://doi.org/10.1006/FSTL.1996.0225. Rojas A. M., Gerschenson L. N. Influence of system composition on ascorbic acid destruction at processing temperatures // Journal of the Science of Food and Agriculture. 1997b. Vol. 74, Iss. 3. P. 369-378. DOI: https://doi.org/10.1002/(SICI)1097-0010(199707)74:3<369::AID-JSFA812>3.0.TO;2-6. Shinoda Y., Komura H., Homma S., Murata M. Browning of model orange juice solution: Factors affecting the formation of decomposition products // Bioscience, Biotechnology and Biochemistry. 2005. Vol. 69, Iss. 11. P. 2129-2137. DOI: https://doi.org/10.1271/bbb.69.2129. Spizzirri U. G., Garullo G., De Cicco L., Crispini A. [et al.]. Synthesis and characterization of a (+)-catechin and L-(+)-ascorbic acid cocrystal as a new functional ingredient for tea drink // Heliyon. 2019. Vol. 5, Iss. 8. Article number: e02291. DOI: https://doi.org/10.1016/j.heliyon.2019.e02291. Tai A., Aburada M., Ito H. A simple efficient synthesis and biological evaluation of 3-O-ethylascorbic acid // Bioscience, Biotechnology and Biochemistry. 2014. Vol. 78, Iss. 12. P. 1984-1987. DOI: https://doi.org/ 10.1080/09168451.2014.946396. Tu Y.-J., Njus D., Schlegel H. B. A theoretical study of ascorbic acid oxidation and HOO / O 2 - radical scavenging // Organic & Biomolecular Chemistry. 2017. Vol. 15, Iss. 20. P. 4417-4431. DOI: https://doi.org/ 10.1039/C7OB00791D. EDN: GQETZT. Yan S., Luo Y., Zhou B., Ingram D. T. Dual effectiveness of ascorbic acid and ethanol combined treatment to inhibit browning and inactivate pathogens on fresh-cut apples // LWT - Food Science and Technology. 2017. Vol. 80. P. 311-320. DOI: https://doi.org/10.1016/j.lwt.2017.02.021. Yin X., Chen K., Cheng H., Chen X. [et al.]. Chemical stability of ascorbic acid integrated into commercial products: A review on bioactivity and delivery technology // Antioxidants. 2022. Vol. 11, Iss. 1. Article number: 153. DOI: https://doi.org/10.3390/antiox11010153. Zhang W., Huang Q., Yang R., Zhao W. [et al.]. 2-O-D-glucopyranosyl-L-ascorbic acid: Properties, production, and potential application as a substitute for L-ascorbic acid // Journal of Functional Foods. 2021. Vol. 82. Article number: 104481. DOI: https://doi.org/10.1016/jjff.2021.104481. References Rybakova, A. V., Slepukhin, P. A., Kim, D. G. 2013. Monoreactor synthesis of 3,4-dithiosemicarbazides of dehydroascorbic acid. Bulletin o f the South Ural State University. Ser. Chemistry, 5(4), pp. 45-48. EDN: REJWMF. (In Russ.) Cherepanov, I. S. 2021. Caramelization of L-arabinose in the presents of L-ascorbic acid in ethanolic media. Scientific journal NRU ITMO. Ser. Processes and Food Production Equipment, 3(49), pp. 23-29. DOI: https://doi.org/10.17586/2310-1164-2021-14-3-23-29. EDN: HRPPGE. (In Russ.) Birch, G. G., Pepper, T. 1983. Protection of vitamin C by sugars and their hydrogenated denvatives. Journal o f Agricultural and Food Chemistry, 31(5), pp. 980-985. DOI: https://doi.org/10.1021/jf00119a015. Chen, B.-Y., Lee, Y.-H., Lin, W.-C., Lin, F.-H. et al. 2006. Understanding the characteristics of L-ascorbic acid- montmorillonite nanocomposite: Chemical structure and biotoxicity. Biomedical Engineering: Applications, Basis and Communications, 18(1), pp. 30-36. DOI: https://doi.org/10.4015/S1016237206000075. Chuang, P.-T., Shen, S.-C., Wu, J. S.-B. 2011. Browning in ethanolic solutions of ascorbic acid and catechin. Journal o fAgricultural andFood Chemistry, 59(14), pp. 7818-7824. DOI: https://doi.org/10.1021/jf200817e. Goldenderg, H., Jirovetz, L., Krajnik, P., Mosgoller, W. et al. 1994. Quantitation of dehydroascorbic acid by the kinetic measurement of a derivatization reaction. Analytical Chemistry , 66(7), pp. 1086-1089. DOI: https://doi.org/10.1021/ac00079a025. Fodor, G., Arnold, R., Monacsi, T., Karle, I. et al. 1983. A new role for L-ascorbic acid: Michael donor to a,p- unsaturated carbonyl compounds. Tetrahedron, 39(13), pp. 2137-2145. DOI: https://doi.org/10.1016/S0040- 4020(01)91929-5. Kambo, N., Upadhyay, S. 2012. Kinetic behavior of ascorbic acid - fructose browning reaction in alkaline medium. Indian Journal o f Chemical Technology , 19(2), pp. 128-133. 257
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz