Вестник МГТУ, 2022, Т. 25, № 2.
Черняков С. М. Модельная оценка точности расчета полного электронного содержания. Задавая реальное время пролета спутника и его координаты, можно получить для выбранного пункта приема сигналов спутников модельные значения полной фазы Fi вдоль линии зрения приемник - спутник для каждого момента времени пролета спутника, т. е., в конечном счете, массив значений полных модельных фаз Fj. Вычитая из полученного массива фаз Ft значение фазы в начальный момент расчета F 0, можно получить массивы фаз Ф„ которые соответствует фазам, получаемым в эксперименте (нулевая первая фаза и ее последующее изменение) для каждого приемного пункта. Значение модельной полной фазы F 0 в начальный момент времени расчета представляет собой неизвестную начальную фазу, определение которой составляет основную трудность при экспериментальном определении ПЭС. Используя полученные для каждого приемного пункта массивы модельных фаз Ф,і и Фі2 с вычтенной начальной фазой, по методу разнесенного приема можно рассчитать начальные фазы для каждого приемного пункта (Ф 01 , Ф 02 ). Сравнение начальных фаз, полученных в результате расчета методом разнесенного приема (Ф 01 , Ф 02 ), с модельными значениями полных фаз в начальный момент ( F 01 , F 02 ) даст возможность оценить погрешность метода для каждого приемного пункта. Оценим точность определения ПЭС на примере двух модельных пространственных распределений электронной концентрации, подобных приведенным на рис. 3 и 4. Первое распределение (рис. 3) соответствует спокойному состоянию в ионосфере в дневное время, второе можно наблюдать во время суббури при появлении плазменного кольца в районе наблюдения (рис. 4) (Черняков и др., 1995). Интегрирование электронной концентрации по высоте для каждой из широт, которые использовались для расчета двумерной модельной картины электронной концентрации, дает модельное ВПЭС для каждой из этих широт. Это позволяет построить модельный профиль ВПЭС по широте. Этот профиль ВПЭС не зависит от выбора пункта наблюдения, а рассчитан непосредственно из двумерного распределения электронной концентрации. На рис. 5, а показано модельное распределение электронной концентрации для спокойных условий, на рис. 6, а - для случая плазменного кольца в районе наблюдения. Для расчета полных фаз F и ВПЭС выбраны времена и траектория спутника, соответствующие реальному пролету спутника в районе наблюдения. Положения приемных пунктов в модельных расчетах близки к положениям реальных приемных пунктов, в которых выполняли наблюдения сигналов низкоорбитальных навигационных спутников в экспериментах. Для пункта R1 выбраны координаты 69° с. ш., 33° в. д. (пос. Верхнетуломский), для пункта R2 - 65° с. ш., 33° в. д. (г. Кемь). Для каждого пункта наблюдения и для каждого распределения электронной концентрации для пролета спутника рассчитывался свой массив наклонного ПЭС и, следовательно, полных фаз F i. На приведенных далее рисунках синим цветом обозначены фазы F и ВПЭС, рассчитанные для пункта R1, красным - для пункта R2. Примеры получаемых фаз Fi приведены на верхних рисунках 5, б и 6, б. Перерасчет наклонного ПЭС в ВПЭС был выполнен согласно формулы (4). Для расчета угла х использовалась формула sinx = Recos0/(Re + h), где Re - радиус Земли, hi - ионосферная высота, Ѳ- угол места спутника. Ионосферная высота была взята равной 400 км. Для расчета выбирались углы места спутников более 30°. Обычно полагают, что выбор высоты ионосферной точки не критичен для перерасчета при высоте угла возвышения более 30°, а высота 400 км вполне подходит для решения большинства задач (Афраймович и др., 2006а). На нижних рисунках 5, б и 6, б приведено ВПЭС, которое было получено для разных пунктов наблюдения при выбранных распределениях электронной концентрации. Видно, что широтные профили ВПЭС, получаемые в различных пунктах приема, зависят от пункта наблюдения. Кроме этого, они отличаются от модельного ВПЭС, который не зависит от конкретного пункта наблюдения (черная линия). Это связано с тем, что для получения ВПЭС в пункте наблюдения используется наклонное ПЭС, для расчета которого берутся направления, отличные от вертикального. Таким образом, при расчете учитываются области ионосферы, находящиеся вне вертикали в точке перерасчета, что вносит погрешность в получаемое ВПЭС относительно модельного ВПЭС. Отметим также, что выбор высоты перерасчета влияет на величину получаемого ВПЭС. Другими словами, сравнение модельного ВПЭС с ВПЭС, получаемом в пункте наблюдения, можно использовать для оценки погрешностей, связанных с положением приемной станции относительно рассматриваемых структур в ионосфере и выбором высоты перерасчета наклонного ПЭС в ВПЭС. В случае спокойной ионосферы (рис. 5, б) модельное ВПЭС и ВПЭС, определяемое в пунктах наблюдения, близки друг к другу. При этом в спокойных геофизических условиях вид ВПЭС восстанавливается в приемных пунктах достаточно хорошо. При наличии в ионосфере изолированных неоднородностей (рис. 6, б) широтные профили ВПЭС, которые получают в разных приемных пунктах, и модельный широтный профиль ВПЭС имеют различия. Наибольшее несоответствие наблюдается в местах с резким изменением электронной концентрации. 142
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz