Вестник МГТУ, 2022, Т. 25, № 1.
Амосов П. В. и др. Численное моделирование загрязнения атмосферы в подходах случайного выбора. References Amosov, P. V., Baklanov, A. A. 2017. The influence of geometric parameters of the dusting source on the assessment of atmospheric pollution. Mining informational and analytical bulletin (scientific and technical journal) , S23, pp. 502-509. DOI: https://doi.org/10.25018/0236-1493-2017-10-23-502-509. ( In Russ.) Amosov, P. V., Baklanov, A. A. 2020. Results of testing the idea of reducing labor costs for performing numerical experiments of dusting processes11. Mathematical Methods in Technics and Technologies ММТТ, 3, pp. 111-113. (In Russ.) Amosov, P. V., Baklanov, А. А., Masloboev, V. А. 2018. Justification of the methodical approach to estimation of dust intensity at tailing dump. Vestnik Kolskogo nauchnogo tsentra, 1(10), pp. 5-14. DOI : https://doi.org/ 10.25702/KSC.2307-5228-2018-10-1-5-14. ( In Russ.) Amosov, P., Baklanov, A., Rigina, O. 2014. Numerical modeling of tailings dusting processes. LAP LAMBERT Academic Publishing. (In Russ.) Amosov, P. V., Baklanov, A. A., Makarov, D. V., Masloboev, V. A. 2021. Forecast of atmospheric pollution at random selection of discrete dusty areas based on numerical modeling. News o f the Higher Institutions. Mining Journal , 5, pp. 63-74. DOI: 10.21440/0536-1028-2021-5-63-74. (In Russ.) Baklanov, A. A. Numerical modeling in mine aerology. 1988. Apatity. (In Russ.) Belov, I. A., Isaev, S. A. 2001. Modeling of turbulent flows: A textbook. St. Petersburg. (In Russ.) Garbaruk, A. V., Strelets, M. H., Shur, M. L. 2012. Turbulence modeling in calculations of complex flows: A textbook. St. Petersburg. (In Russ.) Gmurman, V. E. 2003. Probability theory and mathematical statistics. Moscow. (In Russ.) Marchuk, G. I. 1982. Mathematical modeling in the problem of the environment. Moscow. (In Russ.) Masloboev, V. A., Baklanov, A. A., Mazukhina, S. I., Rigina, O. Yu. et al. 2014. Numerical modeling of dusting processes in ANOF-2 tailings impoundment. Vestnik o fMSTU, 17(2), pp. 376-384. (In Russ.) Masloboev, V. A., Baklanov, A. A., Amosov, P. V. 2016. Results of evaluation of tailing dumps dust intensity. Vestnik o fMSTU, 19(1/1), pp. 13-19. DOI : https://doi.org/10.21443/1560-9278-2016-1/1-13-19. ( In Russ.) Methods for calculating turbulent flows. 1984. Eds. V. Kollman et al. Moscow. (In Russ.) Mikhailov, E. V., Patronova, N. N., Teplyakov, V. V. 2013. Probability theory in examples and problems: Part 1. Combinatorics. Random events and their probabilities. Arkhangelsk. (In Russ.) Penenko, V. V., Aloyan, A. E. 1985. Models and methods for environmental protection tasks. Novosibirsk. (In Russ.) Semenov, O. E. 2011. Introduction to experimental meteorology and climatology of sandstorms. Almaty. (In Russ.) Snegirev, A. Yu. 2009. High-performance computing in technical physics. Numerical modeling of turbulent flows: A textbook. St. Petersburg. (In Russ.) Strizhenok, A. V. 2015. Environmental safety management of alluvial technogenic massifs of JSC "Apatit" in the process of their formation. Ph.D. Thesis. St. Petersburg. (In Russ.) Amosov, P. V., Baklanov, A. A., Makarov, D. V., Masloboev, V. A. 2020. Estimating air pollution levels by numerical simulation depending on wind flow speed and dust source area. News o f the Higher Institutions. Mining Journal, 5, pp. 80-89. DOI : https://doi.org/10.21440/0536-1028-2020-5-80-89. Baklanov, A., Korsholm, U. S., Nuterman, R., Mahura, A. et al. 2017. Enviro-HIRLAM online integrated meteorology - chemistry modelling system: Strategy, methodology, developments and applications (v 7.2). Geoscientific Model Development, 10(8), pp. 2971-2999. DOI: https://doi.org/10.5194/gmd-10-2971-2017. Gillette, D. A., Passi, R. 1988. Modeling dust emission caused by wind erosion. Journal o f Geophysical Research. Atmospheres, 93(D11), pp. 14233-14242. DOI: https://doi.org/10.1029/JD093iD11p14233. Ginoux, P., Chin, M., Tegen, I., Prospero, J. M. et al. 2001. Sources and distributions of dust aerosols simulated with the GOCART model. Journal o f Geophysical Research. Atmospheres, 106(D17), pp. 20255-20273. DOI: https://doi.org/10.1029/2000JD000053. Ginoux, P., Prospero, J., Torres, O., Chin, M. 2004. Long-term simulation of global dust distribution with the GOCART model: Correlation with North Atlantic Oscillation. Journal o fEnvironmental Modelling & Software , 19(2), pp. 113-128. DOI: https://doi.org/10.1016/S1364-8152(03)00114-2. Johnson, K. C. 2006. A comparison of the navy aerosol analysis and prediction system to in situ aerosol measurements in the continental U.S.: Transport vs. local production of soil dust aerosol. Fort Collins (Colorado). URL: http://chem.atmos.colostate.edu/Thesis/Johnson_thesis_final.pdf. Mahura, A., Gonzalez-Aparicio, I., Nuterman, R., Baklanov, A. 2018. Seasonal impact analysis on population due to continuous sulphur emissions from Severonikel smelters of the Kola Peninsula. Geography, Environment, Sustainability, 11(1), pp. 130-144. DOI: https://doi.org/10.24057/2071-9388-2018-11-1-130-144. Marticorena, B., Bergametti, G. 1995. Modeling the atmospheric dust cycle. 1. Design of a soil-derived dust emission scheme. Journal o f Geophysical Research. Atmospheres, 100(D8), pp. 16415-16430. DOI: https://doi.org/ 10.1029/95JD00690. Shannon, S. R. 2009. Modelling the atmospheric mineral dust cycle using a dynamic global vegetation model. Ph.D. Thesis. URL : https://www.paleo.bristol.ac.uk/~ggsrs/website/thesis/thesis.pdf. 72
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz