Вестник МГТУ, 2021, Т. 24, №4.
Вестник МГТУ. 2021. Т. 24, № 4. С. 450-460. DOI: https://doi.org/10.21443/1560-9278-2021-24-4-450-460 (PLS-DA) // Analytical Letters. 2020. Vol. 53, Iss. 6. P. 937-959. DOI: https://doi.org/10.1080/ 00032719.2019.1687507. Wu X., Wu B., Sun J., Li M. [et al.]. Discrimination of apples using near infrared spectroscopy and sorting discriminant analysis // International Journal of Food Properties. 2016. Vol. 19, Iss. 5. P. 1016-1028. DOI: https://doi.org/10.1080/10942912.2014.971181. Zhang L., Wang S.-S., Ding Y.-F., Pan J.-R. [et al.]. Discrimination of transgenic rice based on near infrared reflectance spectroscopy and partial least squares regression discriminant analysis // Rice Science. 2015. Vol. 22, Iss. 5. P. 245-249. DOI: https://doi.org/10.1016/j.rsci.2015.09.004. Zhuang X. G., Wang L. L., Chen Q., Wu X. Y. [et al.]. Identification of green tea origins by near-infrared (NIR) spectroscopy and different regression tools // Science China Technological Sciences. 2017. Vol. 60, Iss. 1. P. 84-90. DOI: https://doi.org/10.1007/s11431-016-0464-0. References Kuprina, E. E. 2015. Identification of commercial aquatic organisms by ichthyological and instrumental methods Saint Petersburg. (In Russ.) Novikov, V. Yu., Baryshnikov, A. V., Rysakova, K. S., Shumskaya, N. V. et al. 2020. Identification of marine fish taxa by linear discriminant analysis of reflection spectra in the near infrared region. Food Processing: Techniques and Technology, 50(1), pp. 159-166. DOI: https://doi.org/10.21603/2074-9414-2020-1-159-166. (In Russ.) Alamprese, C., Amigo, J. M., Casiraghi, E., Engelsen, S. B. 2016. Identification and quantification of turkey meat adulteration in fresh, frozen-thawed and cooked minced beef by FT-NIR spectroscopy and chemometrics. Meat Science, 121, pp. 175-181. DOI: https://doi.org/10.1016/j.meatsci.2016.06.018. Alishahi, A., Farahmand, H., Prieto, N., Cozzolino, D. 2010. Identification of transgenic foods using NIR spectroscopy: A review. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy , 75(1), pp. 1-7. DOI: https://doi.org/10.1016/j.saa.2009.10.001. Cao, Y., Zhang, C., Chen, Q., Li, Y. et al. 2015. Identification of species and geographical strains of Sitophilus oryzae and Sitophilus zeamais using the visible/near-infrared hyperspectral imaging technique. Pest Management Science, 71(8), pp. 1113-1121. DOI: https://doi.org/10.1002/ps.3893. Cozzolino, D., Murray, I. 2004. Identification of animal meat muscles by visible and near infrared reflectance spectroscopy. LWT - Food Science and Technology, 37(4), pp. 447-452. DOI: https://doi.org/10.1016/ j.lwt.2003.10.013. De Azevedo, R. A., de Morais, J. W., Lang, C., de Sales Dambros, C. 2019. Discrimination of termite species using near-infrared spectroscopy (NIRS). European Journal o f Soil Biology, 93. DOI: https://doi.org/ 10.1016/j.ejsobi.2019.04.002. Downey, G., McElhinney, J., Fearn, T. 2000. Species identification in selected raw homogenized meats by reflectance spectroscopy in the mid-infrared, near-infrared, and visible ranges. Applied Spectroscopy , 54(6), pp. 894-899. DOI: https://doi.org/10.1366/0003702001950292. Jiang, W., Zhou, C., Han, G., Via, B. et al. 2017. Classification and identification of plant fibrous material with different species using near infrared technique - a new way to approach determining biomass properties accurately within different species. Frontiers in Plant Science, 7. DOI: https://doi.org/10.3389/fpls.2016.02000. Lazarescu, C., Hart, F., Pirouz, Z., Panagiotidis, K. et al. 2017. Wood species identification by near-infrared spectroscopy. International Wood Products Journal, 8(1), pp. 32-35. DOI: https://doi.org/10.1080/ 20426445.2016.1242270. Li, T., Su, C. 2018. Authenticity identification and classification of Rhodiola species in traditional Tibetan medicine based on Fourier transform near-infrared spectroscopy and chemometrics analysis. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 204, pp. 131-140. DOI: https://doi.org/10.1016/ j.saa.2018.06.004. Luo, W., Huan, S., Fu, H., Wen, G. et al. 2011. Preliminary study on the application of near infrared spectroscopy and pattern recognition methods to classify different types of apple samples. Food Chemistry , 128(2), pp. 555-561. DOI: https://doi.org/10.1016/j.foodchem.2011.03.065. Ma, T., Inagaki, T., Ban, M., Tsuchikawa, S. 2019. Rapid identification of wood species by near-infrared spatially resolved spectroscopy (NIR-SRS) based on hyperspectral imaging (HSI). Holzforschung, 73(4), pp. 323-330. DOI: https://doi.org/10.1515/hf-2018-0128. Munera, S., Amigo, J. M., Aleixos, N., Talens, P. et al. 2018. Potential o f VIS-NIR hyperspectral imaging and chemometric methods to identify similar cultivars of nectarine. Food Control, 86, pp. 1-10. DOI: https://doi.org/10.1016/j.foodcont.2017.10.037. Ning, J., Wang, S., Zhang, Z., Wan, X. 2012. Use of NIR spectroscopy combined with recognition methods for the identification of black teas from different regions. Advanced Materials Research, 503-504, pp. 1601-1604. DOI: https://doi.org/10.4028/www.scientific.net/AMR.503-504.1601. 459
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz