Вестник МГТУ, 2021, Т. 24, №4.

Новиков В. Ю. и др. Применение метода линейного дискриминантного анализа. Конфликт интересов Авторы заявляют об отсутствии конфликта интересов. Библиографический список Куприна Е. Э. Идентификация промысловых гидробионтов ихтиологическими и инструментальными методами. СПб. : Университет ИТМО; ИХиБТ, 2015. 110 с. Новиков В. Ю., Барышников А. В., Рысакова К. С., Шумская Н. В. [и др.]. Идентификация таксонов морских рыб методом линейного дискриминантного анализа спектров отражения в ближней инфракрасной области // Техника и технология пищевых производств. 2020. Т. 50, № 1. С. 159-166. DOI: https://doi.org/ 10.21603/2074-9414-2020-1-159-166. Alamprese C., Amigo J. M., Casiraghi E., Engelsen S. B. Identification and quantification of turkey meat adulteration in fresh, frozen-thawed and cooked minced beef by FT-NIR spectroscopy and chemometrics // Meat Science. 2016. Vol. 121. P. 175-181. DOI: https://doi.org/10.1016/j.meatsci.2016.06.018. Alishahi A., Farahmand H., Prieto N., Cozzolino D. Identification of transgenic foods using NIR spectroscopy: A review // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2010. Vol. 75, Iss. 1. P. 1-7. DOI: https://doi.org/10.1016/j.saa.2009.10.001. Cao Y., Zhang C., Chen Q., Li Y. [et al.]. Identification of species and geographical strains of Sitophilus oryzae and Sitophilus zeamais using the visible/near-infrared hyperspectral imaging technique // Pest Management Science. 2015. Vol. 71, Iss. 8. P. 1113-1121. DOI: https://doi.org/10.1002/ps.3893. Cozzolino D., Murray I. Identification of animal meat muscles by visible and near infrared reflectance spectroscopy // LWT - Food Science and Technology. 2004. Vol. 37, Iss. 4. P. 447-452. DOI: https://doi.org/10.1016/j.lwt.2003.10.013. De Azevedo R. A., de Morais J. W., Lang C., de Sales Dambros C. Discrimination of termite species using near- infrared spectroscopy (NIRS) // European Journal o f Soil Biology. 2019. Vol. 93. DOI: https://doi.org/ 10.1016/j.ejsobi.2019.04.002. Downey G., McElhinney J., Fearn T. Species identification in selected raw homogenized meats by reflectance spectroscopy in the Mid-infrared, near-infrared, and visible ranges // Applied Spectroscopy. 2000. Vol. 54, Iss. 6. P. 894-899. DOI: https://doi.org/10.1366/0003702001950292. Jiang W., Zhou C., Han G., Via B. [et al.]. Classification and identification of plant fibrous material with different species using near infrared technique - a new way to approach determining biomass properties accurately within different species // Frontiers in Plant Science. 2017. Vol. 7. DOI: https://doi.org/10.3389/ fpls.2016.02000. Lazarescu C., Hart F., Pirouz Z., Panagiotidis K. [et al.]. Wood species identification by near-infrared spectroscopy // International Wood Products Journal. 2017. Vol. 8, Iss. 1. P. 32-35. DOI: https://doi.org/ 10.1080/20426445.2016.1242270. Li T., Su C. Authenticity identification and classification of Rhodiola species in traditional Tibetan medicine based on Fourier transform near-infrared spectroscopy and chemometrics analysis // Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy. 2018. Vol. 204. P. 131-140. DOI: https://doi.org/ 10.1016/j.saa.2018.06.004. Luo W., Huan S., Fu H., Wen G. [et al.]. Preliminary study on the application of near infrared spectroscopy and pattern recognition methods to classify different types of apple samples // Food Chemistry. 2011. Vol. 128, Iss. 2. P. 555-561. DOI: https://doi.org/10.1016/jfoodchem.2011.03.065. Ma T., Inagaki T., Ban M., Tsuchikawa S. Rapid identification of wood species by near-infrared spatially resolved spectroscopy (NIR-SRS) based on hyperspectral imaging (HSI) // Holzforschung. 2019. Vol. 73, Iss. 4. P. 323-330. DOI: https://doi.org/10.1515/hf-2018-0128. Munera S., Amigo J. M., Aleixos N., Talens P. [et al.]. Potential of VIS-NIR hyperspectral imaging and chemometric methods to identify similar cultivars of nectarine // Food Control. 2018. Vol. 86. P. 1-10. DOI: https://doi.org/10.1016/j.foodcont.2017.10.037. Ning J., Wang S., Zhang Z., Wan X. Use of NIR spectroscopy combined with recognition methods for the identification of black teas from different regions // Advanced Materials Research. 2012. Vol. 503-504. P. 1601-1604. DOI: https://doi.org/10.4028/www.scientific.net/AMR.503-504.1601. Okubo N., Kurata Y. Nondestructive classification analysis of green coffee beans by using near-infrared spectroscopy // Foods. 2019. Vol. 8, Iss. 2. DOI: https://doi.org/10.3390/foods8020082. Sedjoah R.-C. A.-A., Han B., Yan H. Identification of geographical origin of TPFD based on handheld NIR spectroscopy and PLSDA // NIR News. 2020. Vol. 31, Iss. 5-6. P. 25-29. DOI: https://doi.org/10.1177/ 0960336020944007. Spectroscopic methods in food analysis / eds.: A. S. Franca, L. M. L. Nollet. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2017. 664 p. Sun F., Chen Y., Wang K.-Y., Wang S.-M. [et al.]. Identification o f genuine and adulterated Pinellia ternata by mid-infrared (MIR) and near-infrared (NIR) spectroscopy with partial least squares - discriminant analysis 458

RkJQdWJsaXNoZXIy MTUzNzYz