Вестник МГТУ, 2021, Т. 24, № 3.
Вестник МГТУ. 2021. Т. 24, № 3. С. 277-286. DOI: https://doi.org/10.21443/1560-9278-2021-24-3-277-286 Kitaevskaya, S. V. 2012. Modern trends in the selection and identification of probiotic strains of lactic acid bacteria. Vestnik Kazanskogo tekhnologicheskogo universiteta, 15(17), pp. 184-188. (In Russ.) Kitaevskaya, S. V., Ponomarev, V. Ya. 2014. The role of lactic acid bacteria in ensuring the biosafety of fermented meat products. Vestnik Kazanskogo tekhnologicheskogo universiteta, 17(21), pp. 248-250. (In Russ.) Nikiforova, A. P., Khazagaeva, S. N., Artyukhova, S. I. 2019. Study of the biochemical activity of the Lactobacillus sakei strain LSK-104. ESSUTMBulletin, 4(75), pp. 62-68. (In Russ.) Oleskin, A. V. 2009. Biosocial phenomena in unicellular organisms (exemplified by data concerning Prokaryota). Biology Bulletin Reviews, 70(3), pp. 225-238. (In Russ.) Ponomareva, O. I., Borisova, E. V., Prokhorchik, I. P. 2017. The use of lactic acid bacteria for the preparation of sour ales. Journal o f International Academy o f Refrigeration, 2, pp. 13-17. DOI: https://doi.org/10.21047/ 1606-4313-2017-16-2-13-17. (In Russ.) Amadoro, C., Rossi, F., Piccirilli, M., Colavita, G. 2015. Features of Lactobacillus sakei isolated from Italian sausages: Focus on strains from Ventricina del Vastese. Italian Journal o f Food Safety, 4(4), pp. 220-224. DOI: https://doi.org/10.4081/ijfs.2015.5449. Bjerke, G. A., Rudi, K., Avershina, E., Moen, B. et al. 2019. Exploring the brine microbiota of a traditional norwegian fermented fish product (rakfisk) from six different producers during two consecutive seasonal productions. Foods, 8(2). DOI: https://doi.org/10.3390/foods8020072. Boor, K. J. 2006. Bacterial stress responses: What doesn’t kill them can make them stronger. PLoS Biol., 4(1). DOI: https://doi.org/10.1371/journal.pbio.0040023. Chowdhury, S. P., Nagarajan, T., Tripathi, R., Mishra, M. N. et al. 2007. Strain-specific salt tolerance and osmoregulatory mechanisms in Azospirillum brasilense . FEMS Microbiology Letters , 267(1), pp. 72-79. DOI: https://doi.org/10.1111/j.1574-6968.2006.00540.x. Ezraty, B., Gennaris, A., Barras, F., Collet, J.-F. 2017. Oxidative stress, protein damage and repair in bacteria. Nature Reviews Microbiology, 15(7), pp. 385-396. DOI: https://doi.org/10.1038/nrmicro.2017.26. Hews, C. L., Cho, T., Rowley, G., Raivio, T. L. 2019. Maintaining integrity under stress: envelope stress response regulation of pathogenesis in gram-negative bacteria. Frontiers in Cellular and Infection Microbiology, 9. DOI: https://doi.org/10.3389/fcimb.2019.00313. Ishibashi, N., Yamazaki, S. 2001. Probiotics and safety. The American Journal o f Clinical Nutrition, 73(2), pp. 465s-470s. DOI: https://doi.org/10.1093/ajcn/73.2.465s. Jung, J. Y., Lee, S. H., Jeon, C. O. 2014. Kimchi microflora: History, current status, and perspectives for industrial kimchi production. Applied Microbiology and Biotechnology, 98(6), pp. 2385-2393. DOI: https://doi.org/10.1007/s00253-014-5513-1. Kim, J.-Y., Park, B.-K., Park, H.-J., Park, Y.-H. et al. 2013. Atopic dermatitis-mitigating effects of new Lactobacillus strain, Lactobacillus sakei probio 65 isolated from Kimchi. Journal o f Applied Microbiology, 115(2), pp. 517-526. DOI: https://doi.org/10.1111/jam.12229. Li, D., Liang, X., Wu, C. 2020. Characteristics of nitrogen removal and extracellular polymeric substances of a novel salt-tolerant denitrifying bacterium, Pseudomonas sp. DN-23. Frontiers in Microbiology, 11. DOI: https://doi.org/10.3389/fmicb.2020.00335. Moroni, A. V., Arendt, E. K., Dal Bello, F. 2011. Biodiversity of lactic acid bacteria and yeasts in spontaneously- fermented buckwheat and teff sour doughs. Food Microbiology, 28(3), pp. 497-502. DOI: https://doi.org/ 10.1016/j.fm.2010.10.016. Nyquist, O. L., McLeod, A., Brede, D. A., Snipen, L. et al. 2011. Comparative genomics of Lactobacillus sakei with emphasis on strains from meat. Molecular Genetics and Genomics, 285(4), pp. 297-311. DOI: https://doi.org/10.1007/s00438-011-0608-1. Obst, M., Hehn, R., Vogel, R. F., Hammes, W. P. 1992. Lactose metabolism in Lactobacillus curvatus and Lactobacillus sake. FEMS Microbiology Letters, 97(3), pp. 209-214. DOI: https://doi.org/10.1111/j.1574- 6968.1992.tb05465.x. Papadimitriou, K., Alegria, A., Bron, P. A., de Angelis, M. et al. 2016. Stress physiology of lactic acid bacteria. Microbiology andMolecular Biology Reviews , 80(3), pp. 837-890. DOI: https://doi.org/10.1128/mmbr.00076-15. Papamanoli, E., Tzanetakis, N., Litopoulou-Tzanetaki, E., Kotzekidou, P. 2003. Characterization of lactic acid bacteria isolated from a Greek dry-fermented sausage in respect of their technological and probiotic properties. Meat Science , 65(2), pp. 859-867. DOI: https://doi.org/10.1016/S0309-1740(02)00292-9. Sawatari, Y., Yokota, A. 2007. Diversity and mechanisms of alkali tolerance in Lactobacilli. Applied and Environmental Microbiology, 73(12), pp. 3909-3915. DOI: https://doi.org/10.1128/AEM.02834-06. Skara, T., Axelsson, L., Stefansson, G., Ekstrand, B. et al. 2015. Fermented and ripened fish products in the Northern European countries. Journal o f Ethnic Foods, 2(1), pp. 18-24. DOI: https://doi.org/10.1016/ jjef.2015.02.004. Smith, E. A., Macfarlane, G. T. 1997. Formation of phenolic and indolic compounds by anaerobic bacteria in the human large intestine. Microbial Ecology, 33(3), pp. 180-188. DOI: https://doi.org/10.1007/s002489900020. 285
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz