Вестник МГТУ, 2021, Т. 24, № 2.

Исакова Е. А. и др. Деструкционная активность углеводородокисляющих микромицетов. Ghanbari, T., Mohammadkhani, H. S., Babaeizad, V. 2014. Identification of some secondary metabolites produced by four Penicillium species. MycologiaIranica, 1(2), pp. 107-113. Govarthanan, M., Fuzisawa, S., Hosogai, T., Chang, Y.-C. 2017. Biodegradation of aliphatic and aromatic hydrocarbons using the filamentous fungus Penicillium sp. CHY-2 and characterization of its manganese peroxidase activity. RSC Advances, 7(34), pp. 20716-20723. DOI: https://doi.org/10.1039/c6ra28687a. Husaini, A., Roslan, H. A., Hii, K. S. Y., Ang, C. Y. 2008. Biodegradation of aliphatic hydrocarbon by indigenous fungi isolated from used motor oil contaminated sites. World Journal o f Microbiology and Biotechnology, 24(12), pp. 2789-2797. DOI: https://doi.org/10.1007/s11274-008-9806-3. Klich, M. A. 2002. Identification of common Aspergillus species. Utrecht, The Netherlands. Kumar, R., Kaur, A. 2018. Oil spill removal by mycoremediation. In Microbial Action on Hydrocarbons, eds. V. Kumar et al. Springer, Singapore, pp. 505-526. DOI: https://doi.org/10.1007/978-981-13-1840-5_20. Lebkowska, M., Karwowska, E., Miaskiewicz, E. 1995. Isolation and identification of bacteria from petroleum derivatives contaminated soil. Acta Microbiologica Polonica , 44(3-4), pp. 297-303. Leitao, A. L. 2009. Potential of Penicillium species in the bioremediation field. International Journal o f Environmental Research andPublic Health, 6(4), pp. 1393-1417. DOI: https://doi.org/10.3390/ijerph6041393. Maamar, A., Lucchesi, M.-E., Debaets, S., Nguyen van Long, N. et al. 2020. Highlighting the crude oil bioremediation potential of marine fungi isolated from the port of Oran (Algeria). Diversity, 12(5). DOI: https://doi.org/ 10.3390/d12050196. Macaulay, B. M. 2015. Understanding the behaviour of oil-degrading microorganisms to enhance the microbial remediation o f spilled petroleum. Applied Ecology and Environmental Research, 13(1), pp. 247-262. DOI: https://doi.org/10.15666/aeer/1301_247262. Nakayan, P., Hameed, A., Singh, S., Young, L.-S. et al. 2013. Phosphate-solubilizing soil yeast Meyerozyma guilliermondii CC1 improves maize (Zea mays L.) productivity and minimizes requisite chemical fertilization. Plant and Soil, 373, pp. 301-315. DOI: https://doi.org/10.1007/s11104-013-1792-z. Ossai, I. C., Ahmed, A., Hassan, A., Hamid, F. S. 2020. Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environmental Technology & Innovation, 17. DOI: https://doi.org/10.1016/ j.eti.2019.100526. (Article number: 100526) Park, M. S., Oh, S.-Y., Fong, J. J., Houbraken, J. et al. 2019. The diversity and ecological roles of Penicillium in intertidal zones. Scientific Reports, 9. DOI: https://doi.org/10.1038/s41598-019-49966-5. (Article number: 13540). Raghukumar, S. 2017. Fungi in coastal and oceanic marine ecosystems. Springer, Cham. DOI: https://doi.org/ 10.1007/978-3-319-54304-8. Ravuri, M., Shivakumar, S. 2020. Optimization of conditions for production of lovastatin, a cholesterol lowering agent, from a novel endophytic producer Meyerozyma guilliermondii . Journal o f Biologically Active Products from Nature, 10(3), pp. 192-203. DOI: https://doi.org/10.1080/22311866.2020.1768147. Serra, I., Capusoni, C., Molinari, F., Musso, L. et al. 2019. Marine microorganisms for biocatalysis: Selective hydrolysis of nitriles with a salt-resistant strain of Meyerozyma guilliermondii. Marine Biotechnology, 21(2), pp. 229-239. DOI: https://doi.org/10.1007/s10126-019-09875-0. Sinclair, N. A., Herring, C. M. 1975. Isolation of Penicillium corylophium Dierckx from acid mine water and its optimal growth on hydrocarbons at acid pH. Mycopathologia, 57(1), pp. 19-22. DOI: https://doi.org/10.1007/ BF00431172. Singh, H. 2006. Mycoremediation. Fungal bioremediation. Hoboken, Wiley. Tripathi, P., Singh, P. C., Mishra, A., Chauhan, P. S. et al. 2013. Trichoderma: A potential bioremediator for environmental clean-up. Clean Technologies and Environmental Policy, 15(4), pp. 541-550. DOI: https://doi.org/10.1007/s10098-012-0553-7. Vasconcelos, M. R., Vieira, G. A., Otero, I. V., Bonugli-Santos, R. C. et al. 2019. Pyrene degradation by marine- derived ascomycete: Process optimization, toxicity, and metabolic analyses. Environmental Science and Pollution Research, 26(12), pp. 12412-12424. DOI: https://doi.org/10.1007/s11356-019-04518-2. Zafra, G., Cortes-Espinosa, D. V. 2015. Biodegradation of polycyclic aromatic hydrocarbons by Trichoderma species: A mini review. Environmental Science and Pollution Research, 22(24), pp. 19426-19433. DOI: https://doi.org/10.1007/s11356-015-5602-4. Zajc, J., Gostinčar, C., Černoša, A., Gunde-Cimerman, N. 2019. Stress-tolerant yeasts: Opportunistic pathogenicity versus biocontrol potential. Genes, 10(1-42), pp. 1-23. DOI: https://doi.org/10.3390/genes10010042. Zhang, Q., Gong, J.-S., Dong, T.-T., Liu, T.-T. et al. 2017. Nitrile-hydrolyzing enzyme from Meyerozyma guilliermondii and its potential in biosynthesis of 3-hydroxypropionic acid. Bioprocess and Biosystems Engineering, 40(6), pp. 901-910. DOI: https://doi.org/10.1007/s00449-017-1754-6. Zheng, Z., Obbard, J. P. 2003. Oxidation of polycyclic aromatic hydrocarbons by fungal isolates from an oil contaminated refinery soil. Environmental Science and Pollution Research, 10(3), pp. 173-176. DOI: https://doi.org/10.1065/espr2002.07.126. 188

RkJQdWJsaXNoZXIy MTUzNzYz