Вестник МГТУ, 2021, Т. 24, № 2.
Исакова Е. А. и др. Деструкционная активность углеводородокисляющих микромицетов. Archaea. Evolution, physiology, and molecular biology / eds.: R. A. Garrett, H.-P. Klenk. Blackwell Publishing Ltd, 2007. DOI: https://doi.org/10.1002/9780470750865. Atlas R. M. Microbial degradation of petroleum hydrocarbons: An environmental perspective // Microbiological reviews. 1981. Vol. 45, Iss. 1. Р. 180-209. DOI: https://doi.org/10.1128/mr.45.1.180-209.1981. Chen S., Liu Z., Liu Y., Lu Y. [et al.]. New depsidones and isoindolinones from the mangrove endophytic fungus Meyerozyma guilliermondii (HZ-Y2) isolated from the South China Sea // Beilstein Journal of Organic Chemistry. 2015. Vol. 11. P. 1187-1193. DOI: https://doi.org/10.3762/bjoc.11.133. Csutak O., Stoica I., Ghindea R., Tanase A.-M. [et al.]. Insights on yeast bioremediation processes // Romanian Biotechnological Letters. 2010. Vol. 15. Р. 5066-5071. Domsch K. H., Gams W., Anderson T.-H. Compendium of soil fungi. IHW-Verlag, Eching, 2007. Finley S. D., Broadbelt L. J., Hatzimanikatis V. In silico feasibility of novel biodegradation pathways for 1, 2, 4-trichlorobenzene // BMC Systems Biology. 2010. Vol. 4. DOI: https://doi.org/10.1186/1752-0509-4-7. (Article number: 7) Ghanbari T., Mohammadkhani H. S., Babaeizad V. Identification of some secondary metabolites produced by four Penicillium species // Mycologia Iranica. 2014. Vol. 1, Iss. 2. Р. 107-113. Govarthanan M., Fuzisawa S., Hosogai T., Chang Y.-C. Biodegradation of aliphatic and aromatic hydrocarbons using the filamentous fungus Penicillium sp. CHY-2 and characterization of its manganese peroxidase activity // RSC advances. 2017. Vol. 7, Iss. 34. P. 20716-20723. DOI: https://doi.org/10.1039/c6ra28687a. Husaini A., Roslan H. A., Hii K. S. Y., Ang C. Y. Biodegradation of aliphatic hydrocarbon by indigenous fungi isolated from used motor oil contaminated sites // World Journal of Microbiology and Biotechnology. 2008. Vol. 24, Iss. 12. P. 2789-2797. DOI: https://doi.org/10.1007/s11274-008-9806-3. Klich M. A. Identification of common Aspergillus species. Utrecht, The Netherlands, 2002. Kumar R., Kaur A. Oil spill removal by mycoremediation // Microbial Action on Hydrocarbons / eds. V. Kumar et al. Springer, Singapore, 2018. P. 505-526. DOI: https://doi.org/10.1007/978-981-13-1840-5_20. Lebkowska M., Karwowska E., Miaskiewicz E. Isolation and identification of bacteria from petroleum derivatives contaminated soil // Acta Microbiologica Polonica. 1995. Vol. 44, Iss. 3-4. Р. 297-303. Leitao A. L. Potential of Penicillium species in the bioremediation field // International Journal of Environmental Research and Public Health. 2009. Vol. 6 , Iss. 4. P. 1393-1417. DOI: https://doi.org/10.3390/ijerph6041393. Maamar A., Lucchesi M.-E., Debaets S., Nguyen van Long N. [et al.]. Highlighting the crude oil bioremediation potential of marine fungi isolated from the port of Oran (Algeria) // Diversity. 2020. Vol. 12, Iss. 5. DOI: https://doi.org/10.3390/d12050196. Macaulay B. M. Understanding the behaviour of oil-degrading microorganisms to enhance the microbial remediation of spilled petroleum // Applied Ecology and Environmental Research. 2015. Vol. 13, Iss. 1. P. 247-262. DOI: https://doi.org/10.15666/aeer/1301_247262. Nakayan P., Hameed A., Singh S., Young L.-S. [et al.]. Phosphate-solubilizing soil yeast Meyerozyma guilliermondii CC1 improves maize (Zea mays L.) productivity and minimizes requisite chemical fertilization // Plant and Soil. 2013. Vol. 373. P. 301-315. DOI: https://doi.org/10.1007/s11104-013-1792-z. Ossai I. C., Ahmed A., Hassan A., Hamid F. S. Remediation of soil and water contaminated with petroleum hydrocarbon: A review // Environmental Technology & Innovation. 2020. Vol. 17. DOI: https://doi.org/ 10.1016/j.eti.2019.100526. (Article number: 100526) Park M. S., Oh S.-Y., Fong J. J., Houbraken J. [et al.]. The diversity and ecological roles of Penicillium in intertidal zones // Scientific Reports. 2019. Vol. 9. DOI: https://doi.org/10.1038/s41598-019-49966-5. (Article number: 13540). Raghukumar S. Fungi in coastal and oceanic marine ecosystems. Springer, Cham, 2017. DOI: https://doi.org/ 10.1007/978-3-319-54304-8. Ravuri M., Shivakumar S. Optimization of conditions for production of lovastatin, a cholesterol lowering agent, from a novel endophytic producer Meyerozyma guilliermondii // Journal of Biologically Active Products from Nature. 2020. Vol. 10, Iss. 3. P. 192-203. DOI: https://doi.org/10.1080/22311866.2020.1768147. Serra I., Capusoni C., Molinari F., Musso L. [et al.]. Marine microorganisms for biocatalysis: Selective hydrolysis of nitriles with a salt-resistant strain of Meyerozyma guilliermondii // Marine Biotechnology. 2019. Vol. 21, Iss. 2. P. 229-239. DOI: https://doi.org/10.1007/s10126-019-09875-0. Sinclair N. A., Herring C. M. Isolation of Penicillium corylophium Dierckx from acid mine water and its optimal growth on hydrocarbons at acid pH // Mycopathologia. 1975. Vol. 57, Iss. 1. P. 19-22. DOI: https://doi.org/ 10.1007/BF00431172. Singh H. Mycoremediation. Fungal bioremediation. Hoboken: Wiley, 2006. 592 p. Tripathi P., Singh P. C., Mishra A., Chauhan P. S. [et al.]. Trichoderma: A potential bioremediator for environmental clean-up // Clean Technologies and Environmental Policy. 2013. Vol. 15, Iss. 4. P. 541-550. DOI: https://doi.org/10.1007/s10098-012-0553-7. 186
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz