Вестник МГТУ, 2021, Т. 24, № 2.

Капков В. И. и др. Сообщество фукусовых водорослей литорали губы Ярнышная Баренцева моря Kim J. K., Stekoll M., Yarish C. Opportunities, challenges and future direction of opty-water seaweed aquaculture in United States // Phycologia. 2019. Vol. 58, Iss. 5. P. 446-461. DOI: https://doi.org/10.1080/ 00318884.2019 .1625611. Kim J. K., Yarish C., Hwang E., Park M. [et al.]. Seaweed aquaculture: Cultivation technologies, challenges and its ecosystem services // Algae. 2017. Vol. 32, Iss. 1. P. 1-13. DOI: https://doi.org/10.4490/algae.2017.3233. Koivikko R., Loponen J., Honkanen T., Jormalainen V. Contents of soluble, cell-wall-bound and exuded phlorotannins in the brown alga Fucus vesiculosus, with implications on their ecological functions // Journal o f Chemical Ecology. 2005. Vol. 31, N 1. P. 195-212. DOI: https://doi.org/10.1007/s10886-005-0984-2. Malik A. Metal bioremediation through growing cells // Environment International. 2004. Vol. 30, Iss. 2. P. 261-278. DOI: https://doi.org/10.1016/j.envint.2003.08.001. Pedersen A., Kraemer G., Yarish C. Seaweed of the littoral zone at Cove Island in Long Island Sound: Annual variation and impact o f environmental factors // Nineteenth International Seaweed Symposium / eds.: M. A. Borowitzka et al. Dordrecht : Springer, 2008. Vol. 2. P. 49-432. DOI: https://doi.org/10.1007/978-1-4020-9619-8_51. Roleda M. Y., Hurd C. L. Seaweed nutrient physiology: Application of concepts to aquaculture and bioremediation // Phycologia. 2019. Vol. 58, Iss. 5. P. 552-562. DOI: https://doi.org/10.1080/00318884.2019.1622920. Schmid M., Stengel D. B. Intra-thallus differentiation of fatty acid and pigment profiles in some temporate Fucales and Laminariales // Journal of Phycology. 2015. Vol. 51, Iss. 1. P. 25-36. DOI: https://doi.org/ 1 0 . 1 1 1 1 /jpy. 12268. Smith A. J. Medical and pharmaceutical uses of seaweed natural products. A review // Journal of Applied Phycology. 2004. Vol. 16. P. 245-262. DOI: https://doi.org/10.1023/B:JAPH.0000047783.36600.ef. Wang S., Loreau M. Biodiversity and ecosystem stability across scales in metacommunity // Ecology Letters. 2016. Vol. 19, Iss 5. P. 510-518. DOI: https://doi.org/10.1111/ele.12582. Wiencke C., Amsler C. D. Seaweeds and their communities in Polar regions // Ecological Studies (Analysis and Synthesis) / eds.: Wiencke C., Bischof K. Berlin ; Heidelberg, 2012. Vol. 219. Seaweed Biology. P. 265-291. DOI: https://doi.org/10.1007/978-3-642-28451-9_13. Wiencke C., Gomez I., Dunton K. Phenology and seasonal physiological performance of polar seaweeds // Botanica Marina. 2009. Vol. 52, Iss. 6 . P. 585-592. DOI: https://doi.org/10.1515/BOT.2009.078. References Voskoboinikov, G. M., Pugovkin, D. V. 2012. On possible role of Fucus vesiculosus in cleaning coastal waters from oil pollution. Vestnik o fMSTU, 15(4), pp. 716-721. (In Russ.) Golikov, A. N., Anisimova, N. A., Golikov, A. A., Denisenko, N. V. et al. 1993. Bottom communities and biocenoses of the Yarnishnaya Inlet of the Barents Sea and their seasonal dynamic. Apatity. (In Russ.) Grintal, A. R. 1965. Composition and distribution of seaweeds communities on littoral of inlets Yarnishnaya and Podpachta (East Murman). Trudy Murmanskogo morskogo biologicheskogo instituta, 8(12) : Distribution and composition o f commercial algae in the Barents Sea, pp. 23-41. (In Russ.) Kapkov, V. I., Shoshina, E. V., Belenikina, O. A. 2016. Bioremediation of marine coastal ecosystems: Using artificial reefs. Vestnik o f MSTU, 19(1/2), pp. 286-295. DOI: https://doi.org/10.21443/1560-9278-2016-1/2- 286-295. (In Russ.) Kuznetsov, L. L., Shoshina, E. V. 2003. Phytocenoses of the Barents Sea. Physiological and structural characteristics. Apatity. (In Russ.) Obluchinskaya, E. D. 2014. Biological active compounds of brown seaweeds: Composition and pharmocological properties. Farmaciya, 4, pp. 49-51. (In Russ.) Perestenko, L. P. 1965. Seaweeds distribution on littoral of the inlets Plochie and Bolshye Tchevry (East Murman). Trudy Murmanskogo morskogo biologicheskogo instituta, 8(12) : Distribution and composition o f commercial algae in the Barents Sea, pp. 13-22. (In Russ.) Ryzhik, I. V., Makarov, M. V., Voskoboinikov, G. M. 2014. Physiological state of intertidal brown seaweeds Fucus serratus Linnaeus, 1753 and Fucus distichus Linnaeus, 1767 cultivated on a biofiltration system in the Barents Sea. Russian Journal o fMarine Biology, 40(2), pp. 131-136. (In Russ.) Tichovskaya, Z. P. 1948. Primary production of fucoids in inlets of East Murman. Trudy Murmanskoy biologicheskoy stantsii, 1, pp. 164-189. (In Russ.) Khailov, K. M., Parchevsky V. P. 1983. Hierarchical regulation of the structure and function of marine plants. Kiev. (In Russ.) Shoshina, E. V., Averintseva, S. G. 1994. Seaweeds distribution in Yarnishnaya Inlet of the Barents Sea. In coll. articles Hydrobiological investigations in the bays and inlets o f the northern seas. Apatity, pp. 38-61. (In Russ.) Shoshina, E. V., Kapkov V. I. 2014. Ecolocical features of harvesting fucoid algae of Murman coast o f the Barents Sea. Vestnik o fMSTU, 17(1), pp. 180-189. (In Russ.) Connan, S., Goulard, F., Stiger, V., Deslandes, E. et al. 2004. Interspecific and temporal variation in phlorotannin levels in an assemblage of brown algae. Botanica Marina, 47, pp. 410-416. DOI: https://doi.org/10.1515/ bot.2004.057. 158

RkJQdWJsaXNoZXIy MTUzNzYz