Вестник МГТУ. 2019, Т. 22, № 3.

£ "33 = о. А extract before evaporation extract after evaporation fucoxanthin standard sample chlorophyll a standard sample i Fig. 4. Chromatogram of A. nodosum extracts before and after vacuum evaporation at 50 °C, mg/ml Рис. 4. Хроматограммы экстрактов из водорослей A. nodosum до и после вакуум-выпаривания при 50 °С, мг/мл Conclusions In the course of the study, it has been revealed that the storage of the thalli of algae F. vesiculosus L., F.distichus L., A. nodosum L. of the Barents Sea in the freezer at -25 °C for 6 months does not only affect the stability and quantitative content of pigments, such as fucoxanthin and chlorophyll a, but also allows to increase their extractability from raw materials, which can be used to optimize the extraction process. It has been also shown that when A. nodosum ethanol extract is stored in a dark place at 4 °C for a month, the amount of fucoxanthin and chlorophyll a remains unchanged, and evaporation in vacuum at 50 °C leads to the destruction of chlorophyll a and does not affect the stability of fucoxanthin. References Acedo, A. L. Jr. 2010. Postharvest technology for leafy vegetables. AVRDC - ADB Postharvest Projects RETA 6208/6376. AVRDC Publication No. 10-733. AVRDC - The World Vegetable Center, Taiwan. Arslan, D., Ozcan, Musa M. 2008. Evaluation of drying methods with respect to drying kinetics, mineral content and colour characteristics of rosemary leaves. Energy Conversion and Management, 49(5), pp. 1258-1264. DOI: https://doi.org/10.1016/j.enconman.2007.08.005. Chang, C.-H., Lin, H.-Y., Chang, C.-Y., Liu, Y.-C. et al. 2006. Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. Journal o f Food Engineering, 77(3), pp. 478-485. DOI: https://doi.org/10.1016/jjfoodeng.2005.06.061. Daurtseva, А. V. 2018. Quantitative determination of fucoxanthin content in extracts from fucus algae of the Barents Sea by high performance liquid chromatography and spectrophotometry. In coll. articles Studies on Ecosystems o f the Arctic, Murmansk, pp. 44-49. (In Russ.) Gerasimenko, N. I., Busarova, N. G., Kozlovskaya, E. P. 2010. Pacific Institute of Bioorganic Chemistry of the Far Eastern Branch of the RAS. Brown algae processing method, Russian Federation, Pat. 2399298. (In Russ.) Hii, S.-L., Choong, P.-Y., Woo, K.-K., Wong, C.-L. 2010. Stability studies of fucoxanthin from sargassum binderi. Australian Journal o fBasic and Applied Sciences, 4(10), pp. 4580-4584. Hosikian, A., Lim, S., Halim, R., Danquah, M. K. et al. 2010. Chlorophyll extraction from microalgae: A review on the process engineering aspects. International Journal o f Chemical Engineering, Article ID 391632. DOI: http://dx.doi.org/10.1155/2010/391632. Indrawati, R., Sukowijoyo, H., Indriatmoko, Wijayanti, R. D. E. et al. 2015. Encapsulation of brown seaweed pigment by freeze drying: Characterization and its stability during storage. Procedia Chemistry, 14, pp. 353­ 360. DOI: https://doi.org/10.10167j.proche.2015.03.048. Kawee-ai, A., Kuntiya, A., Kim, S. M. 2013. Anticholinesterase and antioxidant activities of fucoxanthin purified from the microalga Phaeodactylum tricornutum. Natural Product Communications, 8(10), pp. 1381­ 1386.

RkJQdWJsaXNoZXIy MTUzNzYz