Вестник МГТУ. 2016, №4.

Вестник МГТУ. 2016. Т. 19, № 4. С. 806–812. DOI: 10.21443/1560-9278-2016-4-806-812 807 Материалы и методы Методы и подходы авторов опираются на факт, что при высыпаниях электронов и протонов в полярную ионосферу основные эмиссии полярных сияний возбуждаются одновременно с ионизацией атомов и молекул верхней атмосферы. Это и приводит к тому, что при высыпаниях электронов и протонов в полярную ионосферу основные эмиссии полярных сияний возбуждаются одновременно с ионизацией атомов и молекул верхней атмосферы. Само увеличение структуризации ионосферы, то есть увеличение как количества, так и интенсивности ионосферных неоднородностей во время полярных сияний обусловливает ухудшение качества приема GPS/ГЛОНАСС сигналов в высоких широтах, что может привести в конечном итоге к ухудшению точности позиционирования, а во время интенсивных магнитосферных возмущений – к невозможности определения местоположения. Это позволяет использовать полярные сияния в качестве диагностического инструмента для оценки вариаций полного электронного содержания (неоднородностей ПЭС) и качества приема навигационных сигналов. Фактически полярная ионосфера представляет собой огромный экран, на котором изображаются в виде полярных сияний геофизические события, происходящие в ближнем космосе. Таким образом, для наших исследований понадобятся измерения параметров принимаемых радиосигналов и параметров пространственно-временного распределения оптических полярных сияний. Полярные сияния "висят" над Землей в северном и южном полушариях в виде овалов (рис. 2), открытых советскими учеными [6; 7] и отражающих области вторжения частиц из магнитосферы в ионосферу. Планетарная картина овала может быть получена как с помощью сети оптических камер с полным обзором неба (рис. 3), так и с помощью высоко-апогейных спутников, оснащенных оптической аппаратурой [8]. Таким образом, авроральный овал представляет собой мгновенную картину распределения полярных сияний над Землей на высотах более 100 км. Рис. 3. Снимки полярных сияний в зените оптической камерой полного обзора неба на станции ПГИ в Баренцбурге с разрешением 10 минут. Время мировое. Север в верхней части снимка Fig. 3. The images of auroras at the zenith of the optical camera of the sky full review on the PGI station in Barentsburg with a resolution of 10 minutes. UT. North – at the top of the picture Карты неоднородностей в ионосфере строились по методике, описанной в [4] на основании прямых измерений навигационного сигнала на станциях ПГИ и ЗО ИЗМИРАН, а также по данным сети станций GPS (RINEX файлы). Стандартные, с 30-секундным интервалом, двухчастотные GPS/GLONASS измерения обработаны для получения информации о проявлении ПЭС флуктуаций во время бури. В качестве исходных данных служили измерения ПЭС вдоль индивидуальных пролетов спутников над станцией наблюдения. Флуктуационная активность оценивалась по скорости изменения ТЕС – Rate of TEC (ROT) на 1-минутном интервале. Единица измерения ROT – TECU/min, 1 TECU = 10 16 электрон/м 2 . В качестве меры интенсивности флуктуаций был использован индекс ROTI. Результаты и обсуждение Авторами проанализированы десятки событий, демонстрирующих влияние гелиогеофизических возмущений как на прием навигационных сигналов отдельных спутников, принимаемых в отдельных точках, так и в целом по полярным регионам. Общим обнаруженным явлением оказались рост погрешности позиционирования и нарушение целостности системы в условиях, когда полярные сияния полностью охватывают диаграмму направленности навигационного приемника. На рис. 4, 5 приводятся иллюстрации такого события, зарегистрированного на станции ПГИ на Шпицбергене 24 ноября 2009 г. В 18.10 UT

RkJQdWJsaXNoZXIy MTUzNzYz