Вестник МГТУ. 2017, №4.

Вестник МГТУ. 2017. Т. 20, № 4. С. 691–696. DOI: 10.21443/1560-9278-2017-20-4-691-696 691 УДК 656.6.052:519.876.5 Т. Г. Тагиев, В. И. Меньшиков Механизм выбора решений, определенных по значениям функции полезности Рассмотрено описание процесса выбора решения судовым специалистом по обеспечению безопасного плавания судна. Качество описания процесса определяется положительной скалярной величиной, выраженной с помощью моделей функции выигрыша. Проанализирована важность процесса выбора разумного решения, принятого при минимальных потерях или с минимальной вероятностью максимальных потерь. Показано, что умение анализировать выигрыши, определяющие последствия от принятого решения, и способность принять решения в условиях неопределенности являются основными требованиями для лица, принимающего решения. Составлены условия, обеспечивающие реализацию выбора оптимальных решений из множества допустимых решений по критерию минимальной вероятности появления больших потерь (отрицательного выигрыша). Описаны условия выполнения трех требований, необходимых и достаточных для того, чтобы функция выигрыша обладала определенными свойствами. Сделан вывод о том, что критерий выбора и реализации наименее опасного в смысле потери и оптимального решения будет существовать, если существуют функции, которые удовлетворяют определенным требованиям. Учитывая вероятность выбора судовым специалистом "неработающих" или даже "ошибочных" решений, можно оценивать качество выбора и реализации решений, привлекая для этого такое понятие, как "риск". Особенностью безопасного плавания является то, что большая часть принимаемых решений должна выбираться в реальном масштабе времени, но с анализом функции выигрыша, которая позволяет провести четкую границу между принимаемыми и реализуемыми, оправданными и неоправданными решениями. Ключевые слова: безопасность мореплавания, выбор решений, минимальная вероятность максимальных потерь, качество выбора. Введение Процесс выбора разумного решения, принятого при минимальных потерях или с минимальной вероятностью максимальных потерь, является основой безопасного плавания судна в любых навигационных условиях. Умение анализировать выигрыши, определяющие последствия от принятого решения, является неотъемлемой частью искусства управления состоянием плавания для любого судового специалиста. Принятие решения в условиях неопределенности (без должного анализа функции выигрыша) является весьма противоречивым, приводящим порой к выбору или "неработающих", или даже "ошибочных" (безрассудных) решений [1]. Под функцией выигрыша далее в работе будем понимать отношение лица, принимающего решение (ЛПР), к результату от использования принятого решения (возможного выигрыша или проигрыша). Главной особенностью безопасного плавания является то, что большая часть принимаемых решений выбирается в реальном масштабе времени, когда анализ функции выигрыша практически невозможен или существенно затруднен [2]. Однако именно такой анализ функции выигрыша позволяет провести четкую границу между оправданными и неоправданными решениями, а значит использовать те преимущества, которые функция выигрыша способна дать при предсказании результатов от реализуемого решения [3]. Целью данной работы является описание процесса выбора решений и соответствующих управлений состоянием плавания судна, использующего в качестве ориентира скалярную величину, определенную с помощью модели функции выигрыша. Материалы и методы Для реализации поставленной цели необходимо рассмотреть задачу синтеза функции выбора решения, качество которого определено скалярной величиной. Описание процесса выбора решений и соответствующих управлений состоянием плавания судна производится с использованием элементов теории линейных функционалов. Результаты и обсуждение Описание процесса выбора решения, качество которого определено скалярной величиной Пусть далее Р (δ) – линейный функционал, определенный на множестве ∆ функций δ, a F (δ) – линейный вектор-функционал ограничений. В рамках принятых обозначений составим более простой вариант стереотипа принятия решения судовым специалистом, потребовав, чтобы функция δ'( x ) удовлетворяла бы условию P (δ') = max δ∈ ∆ P (δ)| F (δ) ≥ 0 . (1) Для решения этой задачи введем функционал Лагранжа φ(δ, u ) = P (δ) + ( u , F (δ)), (2)

RkJQdWJsaXNoZXIy MTUzNzYz