Вестник МГТУ. 2017, том 20, № 3.

Вестник МГТУ. 2017. Т. 20, № 3. С. 515–525. DOI: 10.21443/1560-9278-2017-20-3-515-525 521 Получается, что реакция деацетилирования не требует участия "свободной" воды, а остановка реакции, наоборот, происходит в результате образования "свободной" воды, которая локально имеет высокую концентрацию в месте ее образования около молекулы хитина. Вода участвует в создании гидратной оболочки молекулы хитина и замедляет деацетилирование, выводя кинетическую кривую на "плато". Вернее всего, реакционная способность гидроксил-ионов в реакции деацетилирования растет при увеличении концентрации щелочи в результате уменьшения степени их гидратации из-за уменьшения концентрации воды. Следовательно, в этих условиях действуют два фактора: первый – уменьшение "свободной" воды при увеличении концентрации щелочи снижает степень гидратации хитина и второй – уменьшение гидратации гидроксил-ионов повышает их реакционную активность. Заключение Подводя итог разным гипотезам о причинах замедления реакции деацетилирования хитина/хитозана, мы можем сделать вывод о том, что в процессе гетерогенного деацетилирования некоторые (или почти все) механизмы замедления реакции имеют место, проявляясь одновременно в той или иной степени: влияние кристалличности, пористости, сольватации. Сольватация (гидратация), по всей видимости, вносит максимальный и решающий вклад в замедление реакции гетерогенного деацетилирования хитина/хитозана. Библиографический список 1. Новиков В. Ю., Коновалова И. Н., Долгопятова Н. В. Химические основы технологии получения хитина и его производных из панциря ракообразных. СПб. : ГИОРД, 2012. 208 с. 2. Shigemasa Y., Matsuura H., Sashiwa H., Saimoto H. Evaluation of different absorbency ratios from infrared spectroscopy for analyzing the degree of deacetylation in chitin // International Journal of Biological Macromolecules. 1996. V. 18, N 3. P. 237–242. 3. Sannan T., Kurita K., Iwakura Y. Studies on chitin. V. Kinetics of deacetylation reaction // Polymer Journal. 1977. V. 9, N 6. P. 649–651. 4. Chang K. L. B., Tsai G., Lee J., Fu W.-R. Heterogeneous N-deacetylation of chitin in alkaline solution // Carbohydrate Research. 1997. V. 303, N 3. P. 327–332. 5. Lusena C. V., Rose R. C. Preparation and viscosity of chitosan // Journal of the Fisheries Research Board of Canada. 1953. V. 10, N 8. P. 521–522. 6. Mima S., Miya M., Iwamoto R., Yoshikawa S. Highly deacetylated chitosan and its properties // Journal of Applied Polymer Science. 1983. V. 28, N 6. P. 1909–1917. 7. Новиков В. Ю., Орлова Т. А., Воронина И. Э. Кинетика реакции дезацетилирования хитина и хитозана // Известия высших учебных заведений. Сер. Пищевая технология. 1990. № 5. С. 64–67. 8. Kurita K., Sannan T., Iwakura Y. Studies on chitin, 4. Evidence for formation of block and random copolymers of N-acetyl-D-glucosamine and D-glucosamine by hetero- and homogeneous hydrolysis // Die Makromolekulare Chemie. 1977. V. 178, N 12. P. 3197–3202. 9. Гамзазаде А. И. Структурная неоднородность как фактор изменчивости свойств хитина и хитозана // Хитин и хитозан: Получение, свойства и применение / под ред. К. Г. Скрябина, Г. А. Вихоревой, В. П. Варламова. М. : Наука, 2002. С. 112–118. 10. Чеботок Е. Н., Новиков В. Ю., Коновалова И. Н. Влияние кристалличности хитина и хитозана на кинетику щелочного деацетилирования // Журнал прикладной химии. 2007. Т. 80, № 10. С. 1724–1729. 11. Focher B., Naggi A., Torri G., Cosani A., Terbojevich M. Chitosans from Euphausia superba. 2: Characterization of solid state structure // Carbohydrate Polymers. 1992. V. 18, N 1. P. 43–49. 12. Новиков В. Ю., Бражная И. Э. Математическое моделирование реакции дезацетилирования хитина/хитозана // Тез. 8-й науч.-техн. конф. МГТУ. Мурманск : МГТУ. 1997. Ч. 2. С. 101–102. 13. Новиков В. Ю. Химический гидролиз хитина и хитозана // Современные перспективы в исследовании хитина и хитозана: материалы 7-й междунар. конф. Санкт-Петербург – Репино, 15–18 сент. 2003 г. М. : ВНИРО, 2003. С. 38–42. 14. Yaghobi N., Mirzadeh H. Enhancement of chitin's degree of deacetylation by multistage alkali treatments // Iranian Polymer Journal. 2004. V. 13, N 2. P. 131–136. 15. Varum K. M., Anthonsen M. W., Grasdalen H., Smidsrod O. Determination of the degree of N-acetylation and the distribution of N-acetyl groups in partially N-deacetylated chitins (chitosans) by high-field n.m.r. spectroscopy // Carbohydrate Research. 1991. V. 211, N 1. P. 17–23. 16. Varum K. M., Anthonsen M. W., Grasdalen H., Smidsrod O. 13 C–N.m.r. studies of the acetylation sequences in partially N-deacetylated chitins (chitosans) // Carbohydrate Research. 1991. V. 217. P. 19–27. 17. Ottoy M. H., Varum K. M., Smidsrod O. Compositional heterogeneity of heterogeneously deacetylated chitosans // Carbohydrate Polymers. 1996. V. 29, N 1. P. 17–24. 18. Lamarque G., Cretenet M., Lucas J.-M. et al. Optimization of α - and β -chitin heterogeneous de-N-acetylation from a multi-step process: new route of de-N-acetylation by means of freeze-pump-thaw cycles // Advances in Chitin Science. V. VII / ed. by I. Boucher, K. Jamieson, A. Retnakaran. Montreal, 2004. P. 66–73.

RkJQdWJsaXNoZXIy MTUzNzYz