Вестник МГТУ. 2019, Т. 22, № 2.

Яковлев А. П. и др. Влияние низкочастотного электромагнитного поля. 3. Bingy, V. N. 2002. Magnetobiology: Experiments and models. 2 ed. Moscow, MILTA. (In Russ.) 4. Magnetite biomineralization and magnetoreception in organisms. A new biomagnetism. 1989. 2 v. J. Kirschvink et al. (eds.), Moscow, Mir, Vol. 1. (In Russ.) 5. Breus, T. K., Bingy, V. N., Petrukovich, A. A. 2016. Magnetic factor of solar-terrestrial connections and its influence on the person: Physical problems and prospects. Uspekhi fizicheskikh nauk, 186(5), pp. 568-576. DOI: 10.3367/UFNr.2015.12.037693. (In Russ.) 6. Eskov, E. K., Toboev, V. A. 2008. Impact of artificially generated electromagnetic fields on biological objects. Bulletin o f the Chuvash University, 2, pp. 28-36. (In Russ.) 7. Zhavoronkov, L. P., Dubovik, B. V., Pavlova, L. N., Kolganova, O. I. et al. 2011. Influence of broadband pulse-modulated EMF of low intensity on the general excitability of the Central nervous system. Radiation and Risk, 20(2), pp. 64-74. (In Russ.) 8. Lukyanova, S. N. 2002. Phenomenology and genesis of changes in the total bioelectric activity of the brain to electromagnetic radiation. Radiotsionnaya biologiya. Radioekologiya, 42(3), pp. 308-314. (In Russ.) 9. Lukyanova, S. N. 2013. Electromagnetic radiation of non-thermal intensity and short exposure as a subthreshold stimulus for the Central nervous system. Radiotsionnaya biologiya. Radioekologiya, 53(6), pp. 625-633. (In Russ.) 10. Lukyanova, S. N. 2015. The electromagnetic field of the microwave range of non-thermal intensity as an irritant to the Central nervous system. Moscow, Federal Medical Biophysical Center named after A. I. Burnazyan. (In Russ.) 11. Matishov, G. G., Voinov, V. B., Verbitsky, E. V., Mikhailyuk, A. L. et al. 2010. Marine mammals in bioengineering systems dual-use: A methodological guide. Murmansk, MMBI KNSt RAN. (In Russ.) 12. Muraveiko, A. V., Stepanyuk, I. A., Morawaka, V. M., Frolova N. S. 2013. The effects of electromagnetic fields in the "Schumann resonance" on the activity of aquatic organisms. Vestnik o fMSTU, 16(4), pp. 764-770. (In Russ.) 13. Pavlova, L. N., Dubovik, B. V., Zhavoronkov, L. P., Glushakova, V. S. Experimental study of possible mechanisms of influencing electromagnetic fields (EMF) of low intensity on animal behavior. 2012. Radiotsionnaya biologiya. Radioekologiya, 52(4), pp. 388-393. (In Russ.) 14. Pavlova, L. N., Dubovik, B. V., Zhavoronkov, L. P., Lushnikova, G. A. 2016. Influence of broadband pulse-modulated EMR microwave of low intensity on Wistar rats with high organization of adaptive behavior. Radiation and Risk, 25(2), pp. 67-78. (In Russ.) 15. Pavlova, L. N., Zhavoronkov, L. P., Dubovik, B. V. Influence of low-intensity broadband pulse- modulated electromagnetic field on cognitive functions of rat brain. 2013. Radiation and Risk, 22(2), pp. 91-100. (In Russ.) 16. Pavlova, L. N., Zhavoronkov, L. P., Dubovik, B. V., Glushakova, V. S. et al. 2010. Experimental evaluation of CNS reactions to the impact of pulsed EMR of low intensity. Radiation and Risk, 19(3), pp. 104-119. (In Russ.) 17. Tereshchenko, E. D., Grigoriev, V. F. Polar Geophysical Institute. 2016. Device for research of influence of an artificial electromagnetic field on water biological objects, Russian Federation, Pat. 166414. (In Russ.) 18. Khabarova, O. V. 2002. Bioeffective frequencies and their connection with natural frequencies of living organisms. Biomeditsinskie tekhnologii i radioelektronika, 5, pp. 56-66. (In Russ.) 19. Kholodov, Yu. A. 1966. Influence of electromagnetic and magnetic fields on the Central nervous system. Moscow, Nauka. (In Russ.) 20. Kholodov, Yu. A. 1975. Reactions of nervous system on electromagnetic fields. Moscow, Nauka. (In Russ.) 21. Elgard, A. L., Kholodov, Yu. A. 1964. Influence of constant magnetic field on motor activity of birds. Zhurnal obshchei biologii, 25(3), pp. 224-237. (In Russ.) 22. Yakovlev, A. P., Grigoriev, V. F. 2017. Changes in the motor activity of the gray seal under the influence of the magnetic field at the frequency of 2, 18 and 36 Hz for 1-4 hours. Vestnik o f MSTU, 20(2), pp. 503-510. DOI: https://doi.org/10.21443/1560-9278-2017-20-2-503-510. (In Russ.) 23. Yakovlev, A. P., Ishkulov, D. G., Zaitsev, A. A., Troshichev, A. R. et al. 2018. Influence of artificial electromagnetic fields at the frequencies of the Schumann resonance on the motor activity of the gray seal. Science in the South o fRussia, 14(4), pp. 82-91. DOI: 10.7868/S25000640180410. (In Russ.) 24. Kholodov, I. A. 1998. Nonspecific reaction of the nervous system to non-ionizing radiation // Radiotsionnaya biologiya. Radioekologiya, 38(1), pp. 121-125. 25. Walker, M. M., Dennis, T. E., Kirschvink, J. L. 2002. The magnetic sense and its use in long-distance navigation by animals. Current Opinion in Neurobiology, 12(6), pp. 735-744. DOI: https://doi.org/10.1016/ S0959-4388(02)00389-6. 26. Zapka, M., Heyers, D., Hein, C. M., Engels, S. et al. 2009. Visual but not trigeminal mediation of magnetic compass information in a migratory bird. Nature, 461(7268), pp. 1274-1277. DOI: https://doi.org/10.1038/ nature08528. 274

RkJQdWJsaXNoZXIy MTUzNzYz