Труды КНЦ (Технические науки вып.4/2025(16))

Труды Кольского научного центра РАН. Серия: Технические науки. 2025. Т. 16, № 4. С. 154-158. Transactions of the Kola Science Centre of r A s . Series: Engineering Sciences. 2025. Vol. 16, No. 4. P. 154-158. Список источников 1. Ruys A. J. Silicon Carbide Ceramics: Structure, Properties and Manufacturing // 2023. P. 549. 2. Wang X., Gao X., Zhang Z., Cheng L., Ma H., Yang W. Advances in modifications and high-temperature applications of silicon carbide ceramic matrix composites in aerospace: A focused review // J. Eur. Ceram. Soc. 2021. Vol. 41 (9), P. 4671-4688. https://doi.org/10.1016/j.jeurceramsoc.2021.03.051. 3. Manikandan E., Agarwal L. A comprehensive review of recent progress, prospect and challenges of silicon carbide and its applications // Silicon 14. 2022. P. 12887-12900. https://doi.org/10.1007/s12633-022-01998-9. 4. Belyakov A. N., Markov M. A., Dyuskina D. A., Bykova A. D., Chekuryaev A. G., Kashtanov A. D. A comparative study of methods for obtaining silicon carbide ceramic materials // Refract. Ind. Ceram. 64. 2023. P. 299-310. https://doi.org/10.1007/s11148-024-00842-4. 5. Li S., Song J., Che Y., Jiao S., He J., Yang B. Advances in molten salt synthesis of non oxide materials // Energ. Environ. Mater. 2023. Vol. 6. https://doi.org/ 10.1002/eem2.12339. 6. Kimura T. Molten salt synthesis of ceramic powders, in: C. Sikalidis (Ed.), Advances in ceramics-synthesis and characterization, processing and specific applications // InTech. 2011. P. 75-100. 7. Gupta S. K., Mao Y. A review on molten salt synthesis of metal oxide nanomaterials: Status, opportunity, and challenge // Prog. Mater. Sci. 117. 2021. 100734. https://doi.org/10.1016/j.pmatsci.2020.100734. 8. Gupta S. K., Mao Y. Recent developments on molten salt synthesis of inorganic nanomaterials: a review // J. Phys. Chem. C 125. 2021. P. 6508-6533. https://doi.org/10.1021/acs.jpcc.0c10981. 9. Ahmoye D., Bucevac D., Krstic V. D. Mechanical properties of reaction sintered SiC-TiC composite // Ceram. Int. 44. 2018. P. 14401-14407. https://doi.org/10.1016/j.ceramint.2018.05.050. 10. Arena H., Coulibaly M., Soum-Glaude A., Jonchere A., Arrachart G., Mesbah A., Pradeilles N., Vandenhende M., Maitre A., Deschanels X. Effect of TiC incorporation on the optical properties and oxidation resistance of SiC ceramics // Sol. Energ. Mat. Sol. C. 213. 2020. 110536. https://doi.org/10.1016/j.solmat.2020.110536. 11. Guo X., Yang H., Zhu X., Zhang L. Preparation and properties of nano-SiC-based ceramic composites containing nano-TiN // Scripta Mater. 68. 2013. P. 281-284. https://doi.org/10.1016/j. scriptamat.2012.10.042. 12. Jang S. H., Kim Y. W., Kim K. J. Effects of Y 2 O 3 -RE 2 O 3 (RE = Sm, Gd, Lu) additives on electrical and mechanical properties of SiC ceramics containing Ti2CN // J. Eur. Ceram. Soc. 36. 2016. P. 2997-3003. https://doi.org/ 10.1016/j.jeurceramsoc.2015.09.042. 13. Bucevac D., Boskovic S., Matovic B., Krstic V. Toughening of SiC matrix with in-situ created TiB2 particles // Ceram. Int. 36. 2010. P. 2181-2188. https://doi.org/10.1016/j.ceramint.2010.06.001. 14. Chen W., Chen J., Zhu M., Zheng J., Ma N.N., Liu X., Chen Z., Huang Z. Fabrication of SiC ceramics with invariable value resistivity in the range of 20-400°C using MAX phase-Ti3AlC2 additives // J. Eur. Ceram. Soc. 41. 2021. P. 6248-6254. https://doi.org/10.1016/j.jeurceramsoc.2021.06.037. 15. Podbolotov K., Moskovskikh D., Abedi M., Suvorova V., Nepapushev A., Ostrikov K.K A. Khort, Low-temperature reactive spark plasma sintering of dense SiC-Ti3SiC2 ceramics // J. Eur. Ceram. Soc. 43. 2023. P. 1343-1351. https://doi.org/10.1016/j.j eurceramsoc.2022.11.036. References 1. Ruys A. J. Silicon Carbide Ceramics: Structure, Properties and Manufacturing, 2023, pp. 549. 2. Wang X., Gao X., Zhang Z., Cheng L., Ma H., Yang W. Advances in modifications and high-temperature applications of silicon carbide ceramic matrix composites in aerospace: A focused review, J. Eur. Ceram. Soc. 2021, Vol. 41 No. 9, pp. 4671-4688. https://doi.org/10.1016/j.jeurceramsoc.2021.03.051. 3. Manikandan E., Agarwal L. A comprehensive review of recent progress, prospect and challenges of silicon carbide and its applications, Silicon 14, 2022, pp. 12887-12900. https://doi.org/10.1007/s12633-022-01998-9. 4. Belyakov A. N., Markov M. A., Dyuskina D. A., Bykova A. D., Chekuryaev A. G., Kashtanov A. D. A comparative study of methods for obtaining silicon carbide ceramic materials, Refract. Ind. Ceram. 64, 2023, pp. 299-310. https://doi.org/10.1007/s11148-024-00842-4. 5. Li S., Song J., Che Y., Jiao S., He J., Yang B. Advances in molten salt synthesis of non oxide materials, Energ. Environ. Mater, 2023, Vol. 6. https://doi.org/ 10.1002/eem2.12339. 6. Kimura T. Molten salt synthesis of ceramic powders, in: C. Sikalidis (Ed.), Advances in ceramics-synthesis and characterization, processing and specific applications, InTech, 2011, pp. 75-100. 7. Gupta S. K., Mao Y. A review on molten salt synthesis of metal oxide nanomaterials: Status, opportunity, and challenge, Prog. Mater. Sci. 117, 2021, 100734. https://doi.org/10.1016/j.pmatsci.2020.100734. 8. Gupta S. K., Mao Y. Recent developments on molten salt synthesis of inorganic nanomaterials: a review, J. Phys. Chem. C 125, 2021, pp. 6508-6533. https://doi.org/10.1021/acs.jpcc.0c10981. © Тарасов В. О., Истомина Е. И., Истомин П. В., Надуткин А. В., Беляев И. М., Грасс В. Э., 2025 157

RkJQdWJsaXNoZXIy MTUzNzYz