Труды КНЦ (Технические науки вып.4/2025(16))
Труды Кольского научного центра РАН. Серия: Технические науки. 2025. Т. 16, № 4. С. 142-149. Transactions of the Kola Science Centre of RAS. Series: Engineering Sciences. 2025. Vol. 16, No. 4. P. 142-149. References 1. Kolobov G. A., Panov V. S., Rakova N. N. Tekhnologii vtorichnykh tugoplavkikh redkikh metallov (obzor) [Technologies of secondary refractory rare metals (review)]. Izv. Vuzov. Tsvetn. Metall., 2015, no. 1, pp. 41-48. (In Russ.). 2. Maksimova A. M. Izvlechenie redkikh i redkozemel’nykh metallov iz tekhnogennykh ob”ektov kak put’ k ratsional’nomu osvoeniyu nedr [Extraction of rare and rare-earth metals from technogenic sources as a path to rational subsoil development]. Vestn. Evraziiskoi Nauki, 2016, vol. 8, no. 5 (36), p. 43. (In Russ.). 3. Hassan E. S. R., Chen Y., Abdel-Khalek N. A., Elbendari A. M. Enhanced tantalum and niobium recovery from fine-grained low-grade Abu Dabbab ore using Falcon concentration and magnetic separation. Sci. Rep., 2025, vol. 15, no. 1, p. 10432. 4. Simco M. M., Bradshaw R. C., Hyers R. W. Recovery of Rhenium from Superalloy Swarf, Grindings, Turnings, and Scrap. TMS Annual Meeting & Exhibition. Cham, Springer Nature Switzerland, 2025, pp. 165-173. 5. Leszczynska-Sejda K., Malarz J., Ciszewski M., Kopyto D., Goc K., Grzybek A., Benke G. Hydrometallurgical Technology for Producing Rhenium (VII) and Cobalt (II) from Waste. Crystals, 2024, vol. 14, no. 9, p. 783. 6. Ferron C. J., Peer J., Andrews J., Fleming C. A. Hydrometallurgical Production of High-Purity Ammonium Perrhenate from Superalloy Scrap. Conference o fMetallurgists. Cham, Springer Nature Switzerland, 2024, pp. 1217-1223. 7. Kowalik P., Kopyto D., Benke G., Ciszewski M., Grzybek A., Malarz J., Leszczynska-Sejda K. Application of Electrodialysis to Production of High-Purity Perrhenic Acid. Separations, 2024, vol. 11, no. 9, p. 253. 8. Li X. T., Li J., Liu S. Q., Du S. H., Wang S. J., Chen J., Cheng S. B. Dual External Field Strategy in Regulating the Superhalogen Characteristics of the Non-Noble Metal Constituted Tantalum Oxide Clusters. J. Phys. Chem. A, 2024, vol. 128, no. 27, pp. 5298-5306. 9. Moradizadeh L., Johar M., Chellehbari Y. M., Li X., Shahgaldi S. Optimized tantalum interlayer thickness for PTLs: Enhancing PEMWE performance, stability, and reducing precious metal loading. J. Power Sources, 2025, vol. 647, p. 237360. 10. Watanabe Y., Tange M., Kanaya Y., Okuyama H., Tanaka S. Tantalum Processing Development for Medical Applications Insights from Relationship of Thermal Processes and Mechanical Properties by LMM-based AM and MIM. J. Japan Soc. Powder Powder Metall ., 2025, vol. 72, suppl., pp. S1099-S1102. 11. Yuan J., Wang Y., Hou X., Zhong J., Tan D. The influence of low degree of deformation on the corrosion resistance of pure tantalum in corrosive media. Int. J. Refract. Met. Hard Mater., 2024, vol. 125, p. 106899. 12. Targanov I. E., BardyshA. V., Troshkina I. D. SorptionofRhenium fromCobalt-Nickel Mother Liquors Formed in Complex Processing ofRhenium-Containing SuperalloyWaste. Russ. J. Appl. Chem., 2022, vol. 95, no. 11, pp. 1715-1722. 13. Targanov I. E., Solodovnikov M. A., Troshkina I. D. Oxidative leaching of rhenium from grinding waste of rhenium-containing superalloys. Izv. Non-Ferr. Metall., 2023, vol. 29, pp. 25-33. 14. Liu J., Tang J., Sun Y., Zhou Y., Shi F. Recovery of Ni and Co elements from superalloy leaching solution by sodium roasting and water leaching. JOM , 2024, vol. 76, no. 7, pp. 3393-3401. 15. Kuznetsova O. G., Levin A. M., Sevost’yanov M. A. Elektrokhimicheskaya pererabotka otkhodov tyazhelykh vol’framovykh splavov v ammonochno-karbonatnykh rastvorakh pod deistviem postoyannogo i peremennogo toka [Electrochemical processing of heavy tungsten alloy waste in ammonia-carbonate solutions under direct and alternating current]. Tr. K o l’sk. Nauch. Tsentra RAN. Ser.: Tekh. Nauki, 2022, vol. 13, no. 1, pp. 155-159. (In Russ.). 16. Chen X., Sun Y., Wang L., Qu X., Zhao Y., Xie H. W., Yin H. Y. Electrochemically recycling degraded superalloy and valorizing CO2 in the affordable borate-modified molten electrolyte. Tungsten, 2024, vol. 6, no. 2, pp. 382-393. 17. Ruziev U. N., Guro V. P., Sharipov Kh. T., Kayumov B. B. U., Niyazmatov A. A. Syr’e dlya modifitsirovannykh tverdykh splavov na osnove karbida vol’frama [Raw materials for modified cemented carbides based on tungsten carbide]. Khim. Zh. Kazakhstana, 2022, no. 1 (77), pp. 37-50. (In Russ.). 18. Panova Y., Aubakirov Y., Arbag H. Selection of sorption materials for the extraction of nickel and cobalt from the ore of the Gornostaevskoye deposit. Chem. Bull. Kazakh Natl. Univ., 2021, vol. 102, no. 3, pp. 4-12. 19. Vodolazov L., Shvab A. Mathematical modeling of the kinetics of ion exchange of tantalum and niobium. Dokl. Akad. Nauk SSSR, 1981, vol. 261, no. 5, p. 1183. (In Russ.). 20. de Souza Gongalves G. A., de Carvalho T. C., Garjulli F., de Carvalho M. S., Espinosa D. C. R. Adsorption of niobium and tantalum contained in tin slag by ion-exchange resins: Equilibrium isotherms, kinetic and thermodynamic studies. Zh. Ustoich. Metall., 2023, vol. 9, no. 3, pp. 1329-1343. (In Russ.). 21. Warshawsky A. Solvent impregnated resins. Ion Exch. Solvent Extr., 1981, vol. 8, p. 229. © Солодовников М. А., Трошкина И. Д., 2025 148
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz