Труды КНЦ (Технические науки вып.3/2025(16))

Труды Кольского научного центра РАН. Серия: Технические науки. 2025. Т. 16, № 3. С. 71-79. Transactions of the Kola Science Centre of RAS. Series: Engineering Sciences. 2025. Vol. 16, No. 3. P. 71-79. 34. Lewis P. et al. Retrieval-augmented generation for knowledge-intensive nlp tasks // Advances in neural information processing systems. 2020. Vol. 33. P. 9459-9474. 35. Pearl J. Causality. 2nd ed. Cambridge University Press, 2009. References 1. Kim R. M., Veselovsky V., Anderson A. Capturing dynamics in online public discourse: A case study of universal basic income discussions on Reddit. Proceedings o fthe InternationalAAAI Conference on Web and SocialMedia, 2025, Vol. 19, pp. 1021-1037. 2. Bennett C. J., Lyon D. Data-driven elections: implications and challenges for democratic societies. Internet Policy Review , 2019, 8 (4). doi: 10.14763/2019.4.1433. 3. Karpova I. V., Voronkova I. E., Biryukova E. A. PR technologies as a means of manipulating the political activity of young people. Advertising and PR in the coordinates o f society, business, and media space, 2020, pp. 18-73. (In Russ.). 4. Revel M., Penigaud T. AI-Enhanced Deliberative Democracy and the Future o f the Collective Will, 2025. 5. Argyle, Lisa P et al. Leveraging AI for democratic discourse: Chat interventions can improve online political conversations at scale. Proceedings o f the National Academy o f Sciences o f the United States o fAmerica, 2023, vol. 120, 41, p. e2311627120. doi:10.1073/pnas.2311627120. 6. Evkoski B., Pollak S. XAI in computational linguistics: understanding political leanings in the Slovenian Parliament. 2023. Available at: https://arxiv.org/pdf/2305.04631 (accessed 20.11.2025). 7. Mosqueira-Rey E. et al. Human-in-the-loop machine learning: a state of the art. Artificial Intelligence Review , 2023, 56 (4), pp. 3005-3054. 8. Chen X. Ethical governance of AI: an integrated approach via human-in-the-loop machine learning. Comput. Sci. Math. Forum, 2023, 8, 29. https://doi.org/10.3390/cmsf2023008029. 9. Antosz P., Szczepanska T., Bouman L., Polhill J. G., Jager W. Sensemaking of causality in agent-based models. International Journal o f Social Research Methodology, 2022, 25 (4), pp. 557-567. 10. Arnold K. F. et al. DAG-informed regression modeling, agent-based modeling and microsimulation modeling: a critical comparison of methods for causal inference. International Journal o f Epidemiology , 2019, 48 (1), pp. 243-253. 11. Lewis P. et al. Retrieval-augmented generation for knowledge-intensive NLP tasks. Advances in Neural Information Processing Systems, 2020, Vol. 33, pp. 9459-9474. 12. Yang R., Salim F.D., Xue H. Sstkg: simple spatial-temporal knowledge graph for interpretable and versatile dynamic information embedding. Proceedings o f the ACM Web Conference 2024, 2024, pp. 551-559. 13. Benzmuller C., Parent X., van der Torre L. Designing normative theories for ethical and legal reasoning: LogiKEy framework. Methodology and Tool Support, 2020. 14. Rao S. et al. Deontic Temporal Logic for Formal Verification of AI Ethics. 2025. 15. Priya T. V., Rao S. Deontic Temporal Logic for Formal Verification of AI Ethics. 2025. Available at: https://arxiv.org/pdf/2501.05765 (accessed 19.11.2025). 16. Tong Y., Sun W. Multimedia network public opinion supervision prediction algorithm based on big data. Complexity , 2020, 6623108. doi: 10.1155/2020/6623108. 17. Yukhno A. Digital transformation: exploring big data governance in public administration. Public Organization Review, 2024, 24 (1), pp. 335-349. 18. Shishaev M., Dikovitsky V. Predicting the popularity of social network publications based on content analysis using the transformer language model. Digital and Information Technologies in Economics and Management. Cham, Springer, 2023, pp. 180-191. 19. Dikovitsky V. V., Shishaev M. G. Automated extraction of deontological statements through multilevel analysis of legal acts. ComputationalMethods in Systems and Software. Cham, Springer, 2018, pp. 102-110. (In Russ.) 20. Yang G.R. et al. A method of predicting and managing public opinion on social media: an agent-based simulation. Information Sciences, 2024, 674. doi: 10.1016/j.ins.2024.120722 21. Li H. et al. Detecting early-warning signals for social emergencies by temporal network sociomarkers. Information Sciences, 2023, 627, pp. 189-204. 22. Wang X. et al. Impact of social participation types on depression in the elderly in China: an analysis based on counterfactual causal inference. Frontiers in Public Health, 2022, 10, 792765. doi:10.3389/fpubh.2022.792765. 23. Akopova T. S., Tikhonova A. V. Citizens’ activity in social networks: influence factors, 2020. Creative Economy, 18 (12), 3805-3826. (In Russ.). doi: 10.18334/ce.18.12.122155. © Диковицкий В. В., 2025 78

RkJQdWJsaXNoZXIy MTUzNzYz