Труды КНЦ (Технические науки вып.3/2025(16))
Труды Кольского научного центра РАН. Серия: Технические науки. 2025. Т. 16, № 3. С. 71-79. Transactions of the Kola Science Centre of RAS. Series: Engineering Sciences. 2025. Vol. 16, No. 3. P. 71-79. 7. Mosqueira-Rey E. et al. Human-in-the-loop machine learning: a state of the art // Artificial Intelligence Review. 2023. Vol. 56, No. 4. P. 3005-3054. 8. Chen X. Ethical Governance of AI: An IntegratedApproachvia Human-in-the-Loop Machine Learning // Comput. Sci. Math. Forum. 2023. 8. 29. https://doi.org/10.3390/cmsf2023008029. 9. Antosz P., Szczepanska T., Bouman L., Gareth Polhill J., Jager W. Sensemaking of causality in agent-based models // International Journal of Social ResearchMethodology. 2022. 25:4. P. 557-567. doi: 10.1080/13645579.2022.2049510. 10. ArnoldK. F. et al. DAG-informed regression modelling, agent-based modelling and microsimulationmodelling: a critical comparison of methods for causal inference // Internationaljournal of epidemiology. 2019. Vol. 48, No. 1. P. 243-253. 11. Lewis P. et al. Retrieval-augmented generation for knowledge-intensive nlp tasks // Advances in neural information processing systems. 2020.Vol. 33. P. 9459-9474. 12. Yang R., Salim F. D., Xue H. Sstkg: Simple spatio-temporal knowledge graph for intepretable and versatile dynamic information embedding // Proceedings of the ACMWeb Conference 2024. 2024. P. 551-559. 13. Benzmuller C., Parent X., van der Torre L. Designing Normative Theories for Ethical and Legal Reasoning: LogiKEy Framework // Methodology, and Tool Support. 2020. 14. Rao S. et al. Deontic Temporal Logic for Formal Verification of AI Ethics //arXiv preprint arXiv:2501.05765. 2025. 15. Priya T. V., Rao S. Deontic Temporal Logic for Formal Verification of AI Ethics //arXiv preprint arXiv:2501.05765. 2025 16. Tong, Yangfan, Sun, Wei. Multimedia Network Public Opinion Supervision Prediction Algorithm Based on Big Data // Complexity. 2020. 6623108, 11 p. https://doi.org/10.1155/2020/6623108. 17. Yukhno A. Digital transformation: Exploring big data governance in public administration // Public Organization Review. 2024. Vol. 24, No. 1. P. 335-349. 18. Shishaev M., Dikovitsky V. Predicting the Popularity of Social Network Publications Based on Content Analysis Using the Transformer Language Model // International Scientific and Practical Conference Digital and Information Technologies in Economics and Management. Cham: Springer Nature Switzerland, 2023. P. 180-191. 19. Dikovitsky V. V., Shishaev M. G. Automated extraction of deontological statements through a multilevel analysis of legal acts // Proceedings of the Computational Methods in Systems and Software. Cham: Springer International Publishing, 2018. P. 102-110. 20. Yang G. R. et al. A method of predicting and managing public opinion on social media: An agent-based simulation // Information Sciences. 2024. Vol. 674. P. 120722. 21. Li H. et al. Detecting early-warning signals for social emergencies by temporal network sociomarkers // Information Sciences. 2023. Vol. 627. P. 189-204. 22. Wang X. et al. Impact of social participation types on depression in the elderly in China: an analysis based on counterfactual causal inference // Frontiers in Public Health. 2022. Vol. 10. P. 792765. 23. Akopova T. S., Tikhonova A. V. Citizens' activity in social networks: factors of influence. 2020. Креативная экономика, 18 (12), 3805-3826. doi: 10.18334/ce.18.12.122155 24. Xiong J., Hswen Y., Naslund J. A. Digital surveillance for monitoring environmental health threats: a case study capturing public opinion fromTwitter about the 2019 Chennai water crisis // Internationaljournal of environmental research and public health. 2020. Vol. 17, No. 14. P. 5077. 25. Lee Y., Bradford B., Posch K. The effectiveness of big data-driven predictive policing: Systematic review // Justice Evaluation Journal. 2024. Vol. 7, No. 2. P. 127-160. 26. Rusnachenko N. L. Language Models Application in Sentiment Attitude Extraction Task // Trudy ISP RAN/Proc. ISP RAS. 2021. Vol. 33, issue 3. P. 199-222. doi: 10.15514/ISPRAS-2021-33(3)-14. 27. Shishaev M., Dikovitsky V., Pimeshkov V., Kuprikov N., Kuprikov M., Shkodyrev V. Extracting relations from texts using vector language models and a neural network classifier // PeerJ Computer Science. 2023. 9. e1636. 28. Wang Z. et al. History, development, and principles of large language models: an introductory survey // AI and Ethics. 2025. Vol. 5, No. 3. P. 1955-1971. 29. Huwiler D., Stockinger K., Furst J. VersionRAG: Version-Aware Retrieval-Augmented Generation for Evolving Documents //arXiv preprint arXiv:2510.08109. 2025. 30. Сытько А. В. Говорящий как субъект деонтики в политической речи (на материале немецкого и русского языков) // Вестник Российского университета дружбы народов. Серия: Теория языка. Семиотика. Семантика. 2019. Т. 10, № 4. С. 1003-1020. doi: 10.22363/2313-2299-2019-10-4-1003-1020. 31. RAS F.ruSciFact: Open Benchmark for Verifying Scientific Facts in Russian // Proceedings of the International Conference “Dialogue 2025”. 2025. 32. Huang K., Chen C. Subgraph generation applied in GraphSAGE deal with imbalanced node classification // Soft Computing. 2024. Vol. 28, No. 17. P. 10727-10740. 33. Fey M., Lenssen J. E. Fast graph representation learning with PyTorch Geometric //arXiv preprint arXiv:1903.02428. 2019. © Диковицкий В. В., 2025 77
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz