Труды КНЦ (Технические науки вып.3/2025(16))

Труды Кольского научного центра РАН. Серия: Технические науки. 2025. Т. 16, № 3. С. 35-55. Transactions of the Kola Science Centre of RAS. Series: Engineering Sciences. 2025. Vol. 16, No. 3. P. 35-55. 22. Sequeira K., Zaki M. J. Schism: A new approach for interesting subspace mining. Proceedings o fthe IEEE ICDM, 2004, pp. 186-193. 23. Liu G., Li J., Sim K., Wong L. Distance based subspace clustering with flexible dimension partitioning. Proceedings o f the IEEE ICDE , 2007, pp. 1250-1254. 24. Kelkar B. A., Rodd S. F. Subspace Clustering—A Survey. Proceedings o fICDMAI, 2018, vol. 1, pp. 209-220. 25. Liu G., Sim K., Li J., Wong L. Efficient Mining of Distance-Based Subspace Clusters. Wiley Periodicals, Inc. 2009. Published online in Wiley InterScience. Available at: www.interscience.wiley.com (accessed 10.10.2025). 26. Aggarwal C. C., Procopiuc C. M., Wolf J. L., Yu P. S., Park J. S. Fast algorithms for projected clustering. Proceedings o f the 1999 ACM SIGMOD Conference. Philadelphia, Pennsylvania, USA, 1999, pp. 61-72. 27. Aggarwal C. C., Yu P. S. Finding generalized projected clusters in high dimensional spaces. Proceedings o f the 2000 ACM SIGMOD Conference. Dallas, Texas, USA, 2000, pp. 70-81. 28. Woo K.-G., Lee J.-H., Kim M.-H., Lee Y.-J. Findit: a fast and intelligent subspace clustering algorithm using dimension voting. Inf. Soft Tech., 2004, no 46 (4), pp. 255-271. 29. Kriegel H.-P., Kroger P., Zimek A. Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans Knowl Dis Data Min, 2009, no 3 (1), pp. 1-58. 30. Guimei L., Kelvin S., Jinyan L., Limsoon W. Distance Based Subspace Clustering with Flexible Dimension Partitioning. IEEE. 2007. Available at: https://www.researchgate.net/publication/4250954_Distance_Based_Sub space_Clustering_with_Flexible_Dimension_Partitioning (accessed 10.10.2025). 31. Gan G. Subspace clustering for high dimensional categorical data. ACM SIGKDD Explorations Newsletter, 2003, vol. 6, Iss. 2, pp. 87-94. 32. Chang J.-W., Jin D.-S. A new cell-based clustering method for large, high-dimensional data in data mining applications. Proceedings o f the 2002 ACM symposium on Applied computing, 2002, pp. 503-507. 33. Liu B., Xia Y., Yu P. S. Clustering through decision tree construction. Proceedings o f the 9th CIKM conference, 2000, pp. 20-29. 34. Ester M., Kriegel H.-P., Sander J., Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings o fthe 2ndACM SIGKDD Conference. Portland, Oregon, USA, 1996, pp. 226-231. 35. Procopiuc C. M., JonesM., AgarwalP. K., Murali T. M. AMonte Carlo algorithmforfastprojective clustering Proceedings o f the ACM SIGMOD Intern. conf on management o f data. Madison, Wisconsin, USA, 2002, pp. 418-427. 36. Zaki M. J. Scalable algorithms for association mining. IEEE Transactions on Knowledge and Data Engineering, 2000, no 12 (3), pp. 372-390. 37. Han J., Pei J., Yin Y. Mining frequent patterns without candidate generation. Proceedings o f the ACM SIGMOD, 2000, pp. 1-12. 38. Cheng C. H., Fu A. W.-C., Zhang Y. Entropy-based subspace clustering for mining numerical data. Proceedings o f the 5th ACM SIGKDD Conference, 1999, pp. 84-93. 39. Newman D. J., Hettich S., Blake C. L., Merz C. J. UCI repository of machine learning databases. Department o fInformation and Computer Science, University of California, Irvine, 1998. Available at: http/ /www.ics.uci.edu/~ mlearn/MLRepository.html (accessed 10.10.2025). 40. Assent I., Krieger R., Muller E., Seidl T. Dusc: dimensionality unbiased subspace clustering. Proceedings o f the 7th ICDM Conference. Omaha, Nebraska, USA, 2007, pp. 409-414. 41. Uno T., Kiyomi M., Arimura H. Lcm ver.3 Proceedings o f the ACM OSDM workshop, 2005, pp. 77-86. 42. Agrawal R., Mannila H., Srikant R., Toivonen H., Verkamo A. I. Fast Discovery of Association Rules. Advances in Knowledge Discovery and Data Mining, AAAI/MIT Press, 1996, chapter 12, pp. 307-328. 43. Aho A., Hopcroft J., Ullman J. The Design andAnalysis o f Computer Algorithms. Addison-Welsle, 1974. 44. Wang H., Wang W., Yang J., Yu P. S. Clustering by pattern similarity in large data sets. Proceedings o f the 2002 ACM SIGMOD Conference, 2002, pp. 394-405. 45. Pasquier N., Bastide Y., Taouil R., Lakhal L. Discovering frequent closed itemsets for association rules. Proceedings o f the 7th ICDT Conference. Jerusalem, Israel, 1999, pp. 398-416. 46. Rymon R. Search through systematic set enumeration. Proceedings o f the International Conference on Principles o fKnowledge Representation and Reasoning, Cambridge, Massachusetts, USA, 1992. 47. Bilenko M., Basu S., Mooney R. J. Integrating constraints and metric learning in semi-supervised clustering. Proceedings o f the ICML , 2004, p. 11. 48. Klein D., Kamvar S. D., Manning C. D. From instance level constraints to space-level constraints: Making the most of prior knowledge in data clustering. Proceedings o f the ICML, 2002, pp. 307-314. © Зуенко О. Н., Фридман О. В., 2025 54

RkJQdWJsaXNoZXIy MTUzNzYz