Труды КНЦ (Технические науки вып.3/2025(16))

Труды Кольского научного центра РАН. Серия: Технические науки. 2025. Т. 16, № 3. С. 35-55. Transactions of the Kola Science Centre of RAS. Series: Engineering Sciences. 2025. Vol. 16, No. 3. P. 35-55. 52. Bonchi F., Giannotti F., Mazzanti A., Pedreschi D. Adaptive constraint pushing in frequent pattern mining // Proceedings of the PKDD. 2003. P. 47-58. 53. Jeudy B., Boulicaut J.-F. Optimization of association rule mining queries // Intell. Data Anal. 2002. No. 6 (4). P. 341-357. 54. Besson J., Robardet C., Boulicaut J.-F., Rome S. Constraint-based concept mining and its application to microarray data analysis // Intell. Data Anal. 2005. No. 9 (1). P. 59-82. 55. Gely A. A generic algorithmfor generating closed sets of abinary relation// Proceedings of the ICFCA. 2005. P. 223-234. 56. Shannon C. E., Weaver W. The Mathematical Theory of Communication. University of Illinois Press, 1949. 57. Kailing K., Kriegel H.-P., Kroger P., Wanka S. Ranking interesting subspaces for clustering high dimensional data // Proceedings of the 7th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD), Cavtat-Dubrovnik, Croatia, 2003. P. 241-252. 58. Kriegel H.-P., Kroger P., Sander J., Zimek A. Density-based clustering // Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2011. No. 1 (3). P. 231-240. References 1. Jain A. K., Dubes R. C. Algorithmsfo r Clustering Data. Prentice Hall, 1988. 2. KaufmanL., Rousseeuw P. Finding Groups in Data: An Introduction to ClusterAnalysis. JohnWiley and Sons, 1990. 3. Arabie P., Hubert L. J. An overview of combinatorial data analysis. Clustering and Classification, World Scientic Pub., New Jersey, 1996, pp. 5-63. 4. Duda R. O., Hart P. E. Pattern Classification and Scene Analysis. John Wiley and Sons, 1973. 5. Fukunaga K. Introduction to Statistical Pattern Recognition. Academic Press, 1990. 6. Cheeseman P., Stutz J. Bayesian classification (autoclass): Theory and results. Advances in Knowledge. Discovery and Data Mining, AAAI/MIT Press, 1996, chapter 6, pp. 153-180. 7. Michalski R. S., Stepp R. E. Learning from observation: Conceptual clustering. Machine Learning: An Artificial Intel ligence Approach, Morgan Kaufmann, 1983, vol. 1, pp. 331-363. 8. Mittal H., Pandey A. C, Saraswat M., Kumar S., Pal R., Modwel G. A comprehensive survey of image segmentation: clustering methods, performance parameters, and benchmark datasets. Multim ToolsApp , 2022, vol. 81, pp. 1-26. 9. Xu R., Wunsch D. C. Clustering algorithms in biomedical research: a review. IEEE Rev Biomed Eng, 2010, vol. 3, pp. 120-154. 10. Kriegel H. P., Kroger P., Zimek A. Clustering High-Dimensional Data: A Survey on Subspace Clustering, Pattern- Based Clustering, and Correlation Clustering. ACM Transactions on Knowledge Discovery from Data (TKDD), 2009, vol. 3, Iss. 1, pp. 1-58. 11. Kailing K., Kriegel H. P., Kroger P. Density-connected subspace clustering for high-dimensional data. Proceedings o f the SDM , 2004, pp. 246-257. 12. Hu J. Subspace clustering methods for understandable information organization. Thesis Submitted in Partial Fulfillment o f the Requirements for the Degree o f Doctor o f Philosophy in the School o f Computing Science Faculty o fApplied Sciences. Simon Fraser University, 2017. 13. Kaur A., Datta A. A novel algorithm for fast and scalable subspace clustering of high-dimensional data. Journal o fBig Data, 2015, vol. 2, Iss. 17, 24 p. 14. Charu C. Aggarwal, Han J. Editors. Frequent Pattern Mining. Springer Cham, 2014, 490 p. 15. Berchtold S., Bohm C., Keim D., Kriegel H.-P. A cost model for nearest neighbor search in high-dimensional data space. Proceedings o f the 16th Symposium on Principles o fDatabase Systems (PODS), 1997, pp. 78-86. 16. Parsons L., Haque E., Liu H. Subspace clustering for high dimensional data: a review. ACM, Sigkdd explorations newsletter, 2004, vol. 6, Iss. 1, pp. 90-105. 17. Agrawal R., Gehrke J., Gunopulos D., Raghavan P. Automatic subspace clustering of high dimensional data for data mining applications. Proceedings o f the 1998 ACM SIGMOD Conference, 1998, pp. 94-105. 18. Parsons L., Haque E., Liu H. Subspace clustering for high dimensional data: a review. SIGKDD Explor Newslett, 2004, no. 6 (1), pp. 90-105. 19. Assent I., Krieger R., Muller E., Seidl T. Dusc: Dimensionality unbiased subspace clustering. Proceedings o f the IEEE ICDM, 2007, pp. 409-414. 20. Cheng C.-H., Fu A. W., Zhang Y. Entropy-based subspace clustering for mining numerical data. Proceedings o f the KDD, 1999, pp. 84-93. 21. Nagesh H., Goil S., Choudhary A. Mafia: Efficient and scalable subspace clustering for very large data sets. Technical Report 9906-010, Northwestern University, 1999. © Зуенко О. Н., Фридман О. В., 2025 53

RkJQdWJsaXNoZXIy MTUzNzYz