Труды КНЦ (Технические науки вып.3/2025(16))
Труды Кольского научного центра РАН. Серия: Технические науки. 2025. Т. 16, № 3. С. 35-55. Transactions of the Kola Science Centre of RAS. Series: Engineering Sciences. 2025. Vol. 16, No. 3. P. 35-55. 26. Aggarwal C. C., Procopiuc C. M., Wolf J. L., Yu P. S., Park J. S. Fast algorithms for projected clustering // Proceedings of the 1999 ACM SIGMOD Conference. Philadelphia, Pennsylvania, USA. 1999. P. 61-72. 27. Aggarwal C. C., Yu P. S. Finding generalized projected clusters in high dimensional spaces // Proceedings of the 2000 ACM SIGMOD Conference. Dallas, Texas, USA. 2000. P. 70-81. 28. Woo K.-G., Lee J.-H., Kim M.-H., Lee Y.-J. Findit: a fast and intelligent subspace clustering algorithm using dimension voting // Inf. Soft Tech. 2004. No. 46 (4). P. 255-271. 29. Kriegel H.-P., Kroger P., Zimek A. Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. // ACM Trans Knowl Dis Data Min. 2009. № 3(1), P. 1-58. 30. Guimei L., Kelvin S., Jinyan L., Limsoon W. Distance Based Subspace Clustering with Flexible Dimension Partitioning // IEEE. 2007 [Электронный ресурс]. URL: https://www.researchgate.net/publication/4250 954_Distance_Based_Subspace_Clustering_with_Flexible_Dimension_Partitioning (дата обращения: 10.10.2025). 31. Gan G. Subspace clustering for high dimensional categorical data // ACM SIGKDD Explorations Newsletter. 2003. Vol. 6, Iss. 2. P. 87-94. 32. Chang J.-W., Jin D.-S. A new cell-based clustering method for large, high-dimensional data in data mining applications // Proceedings of the 2002 ACM symposium on Applied computing. 2002. P. 503-507. 33. Liu B., Xia Y., Yu P. S. Clustering through decision tree construction // Proceedings of the 9th CIKM conference. 2000. P. 20-29. 34. EsterM., Kriegel H.-P., Sander J., Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise // Proceedings of the 2nd ACM SIGKDD Conference. Portland, Oregon, USA. 1996. P. 226-231. 35. Procopiuc C. M., Jones M., Agarwal P. K., Murali T. M. A Monte Carlo algorithm for fast projective clustering // Proceedings of the ACM SIGMOD Intern. conf. onmanagement of data. Madison, Wisconsin, USA, 2002. P. 418-427. 36. Zaki M. J. Scalable algorithms for association mining // IEEE Transactions on Knowledge and Data Engineering. 2000. No. 12 (3). P. 372-390. 37. Han J., Pei J., Yin Y. Mining frequent patterns without candidate generation // Proceedings of the ACM SIGMOD. 2000. P. 1-12. 38. Cheng C. H., Fu A. W.-C., Zhang Y. Entropy-based subspace clustering for mining numerical data // Proceedings of the 5th ACM SIGKDD Conference. 1999. P. 84-93. 39. Newman D. J., Hettich S., Blake C. L., Merz C. J. UCI repository of machine learning databases // Department of Information and Computer Science, University of California, Irvine, 1998 [Электронный ресурс]. URL: http/ /www.ics.uci.edu/~mlearn/MLRepository.html (дата обращения: 10.10.2025). 40. Assent I., Krieger R., Muller E., Seidl T. Dusc: dimensionality unbiased subspace clustering // Proceedings of the 7th ICDM Conference. Omaha, Nebraska, USA. 2007. P. 409-414. 41. Uno T., Kiyomi M., Arimura H. Lcm ver.3 // Proceedings of the ACM OSDM workshop. 2005. P. 77-86. 42. Agrawal R., Mannila H., Srikant R., Toivonen H., Verkamo A. I. Fast Discovery of Association Rules. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, AAAI/MIT Press. 1996. chapter 12. P. 307-328. 43. Aho A., Hopcroft J., Ullman J. The Design and Analysis of Computer Algorithms. Addison-Welsle, 1974. 44. Wang H., Wang W., Yang J., Yu P. S. Clustering by pattern similarity in large data sets // Proceedings of the 2002 ACM SIGMOD Conference. 2002. P. 394-405. 45. Pasquier N., Bastide Y., Taouil R., Lakhal L. Discovering frequent closed itemsets for association rules // Proceedings of the 7th ICDT Conference. Jerusalem, Israel. 1999. P. 398-416. 46. Rymon R. Search through systematic set enumeration // Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning, Cambridge, Massachusetts, USA, 1992. 47. Bilenko M., Basu S., Mooney R. J. Integrating constraints and metric learning in semi-supervised clustering // Proceedings of the ICML. 2004. P. 11. 48. Klein D., Kamvar S. D., Manning C. D. From instance level constraints to space-level constraints: Making the most of prior knowledge in data clustering // Proceedings of the ICML. 2002. P. 307-314. 49. Ruiz C., Spiliopoulou M., Ruiz E. M. C-dbscan: Density-based clustering with constraints // RSFDGrC. 2007. Vol. 4482, P. 216-223. 50. Struyf J., Dzeroski S. Clustering trees with instance level constraints // ECML. 2007. P. 359-370. 51. Fromont E., Prado A., Robardet C. Constraint-based Subspace Clustering [Электронный ресурс]. URL: https://www.researchgate.net/publication/29605468_Constraint-based_Subspace_Clustering (дата обращения: 10.10.2025). © Зуенко О. Н., Фридман О. В., 2025 52
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz