Труды КНЦ (Технические науки вып.3/2025(16))

Таким образом, проведенный анализ показал, что на настоящий момент актуальна проблема разработки эффективных методов кластеризации в подпространствах, которые учитывали бы дополнительные пользовательские ограничения к виду получаемого решения и использовали бы их для ускорения процесса поиска и повышения точности процесса кластеризации. Список источников 1. Jain A. K., Dubes R. C. Algorithms for Clustering Data. Prentice Hall, 1988. 2. KaufmanL., Rousseeuw P. Finding Groups inData: An Introduction to Cluster Analysis. JohnWiley and Sons, 1990. 3. Arabie P., Hubert L. J. An overview of combinatorial data analysis. Clustering and Classification, World Scientic Pub., New Jersey, 1996. P. 5-63. 4. Duda R. O., Hart P. E. Pattern Classification and Scene Analysis. John Wiley and Sons, 1973. 5. Fukunaga K. Introduction to Statistical Pattern Recognition. Academic Press, 1990. 6. Cheeseman P., Stutz J. Bayesian classification (autoclass): Theory and results. Advances in Knowledge. Discovery and Data Mining, AAAI/MIT Press, 1996. chapter 6. P. 153-180. 7. Michalski R. S., Stepp R. E. Learning from observation: Conceptual clustering. Machine Learning: An Artificial Intelligence Approach, Morgan Kaufmann. 1983. Vol. 1. P. 331-363. 8. Mittal H, Pandey A. C., Saraswat M. et al. A comprehensive survey of image segmentation: clustering methods, performance parameters, and benchmark datasets // Multim Tools App. 2022. Vol. 81. P. 1-26. 9. Xu R., Wunsch D. C. Clustering algorithms in biomedical research: a review // IEEE Rev Biomed Eng. 2010. Vol. 3. P. 120-154. 10. Kriegel H. P., Kroger P., Zimek A. Clustering High-Dimensional Data: A Survey on Subspace Clustering, Pattern- Based Clustering, and Correlation Clustering // ACM Transactions on Knowledge Discovery from Data (TKDD). 2009. Vol. 3, Iss. 1. P. 1-58. 11. Kailing K., Kriegel H. P., Kroger P. Density-connected subspace clustering for high-dimensional data // Proceedings of the SDM. 2004. P. 246-257. 12. Hu J. Subspace clustering methods for understandable information organization // Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the School of Computing Science Faculty of Applied Sciences. Simon Fraser University. 2017. 13. Kaur A., Datta A. A novel algorithm for fast and scalable subspace clustering of high-dimensional data // Journal of Big Data. 2015. Vol. 2, Iss. 17, 24 p. 14. Charu C. Aggarwal, Han J. Editors. Frequent PatternMining. Springer Cham, 2014. 490 p. 15. Berchtold S., Bohm C., Keim D., Kriegel H.-P. A cost model for nearest neighbor search in high-dimensional data space // Proceedings of the 16th Symposium on Principles of Database Systems (PODS). 1997. P. 78-86. 16. Parsons L., Haque E., Liu H. Subspace clustering for high dimensional data: a review // ACM, Sigkdd explorations newsletter. 2004. Vol. 6, Iss. 1. P. 90-105. 17. Agrawal R., Gehrke J., Gunopulos D., Raghavan P. Automatic subspace clustering of high dimensional data for data mining applications // Proceedings of the 1998 ACM SIGMOD Conference. 1998. P. 94-105. 18. Parsons L., Haque E., Liu H. Subspace clustering for high dimensional data: a review // SIGKDD Explor Newslett. 2004. № 6 (1). P. 90-105. 19. Assent I., Krieger R., Muller E., Seidl T. Dusc: Dimensionality unbiased subspace clustering // Proceedings of the IEEE ICDM. 2007. P. 409-414. 20. Cheng C.-H., Fu A. W., Zhang Y. Entropy-based subspace clustering for mining numerical data // Proceedings of the KDD. 1999. P. 84-93. 21. Nagesh H., Goil S., Choudhary A. Mafia: Efficient and scalable subspace clustering for very large data sets // Technical Report 9906-010, Northwestern University, 1999. 22. Sequeira K., Zaki M. J. Schism: A new approach for interesting subspace mining // Proceedings of the IEEE ICDM. 2004. P. 186-193. 23. Liu G., Li J., Sim K., Wong L. Distance based subspace clustering with flexible dimension partitioning // Proceedings of the IEEE ICDE. 2007. P. 1250-1254. 24. Kelkar B. A., Rodd S. F. Subspace Clustering—A Survey // Proceedings of ICDMAI. 2018. Vol. 1. P. 209-220. 25. Liu G., Sim K., Li J., Wong L. Efficient Mining of Distance-Based Subspace Clusters. Wiley Periodicals, Inc. 2009. Published online in Wiley InterScience [Электронный ресурс]. URL: www.interscience.wiley.com (дата обращения: 10.10.2025). Труды Кольского научного центра РАН. Серия: Технические науки. 2025. Т. 16, № 3. С. 35-55. Transactions of the Kola Science Centre of RAS. Series: Engineering Sciences. 2025. Vol. 16, No. 3. P. 35-55. © Зуенко О. Н., Фридман О. В., 2025 51

RkJQdWJsaXNoZXIy MTUzNzYz