Труды КНЦ (Технические науки вып.3/2025(16))

Труды Кольского научного центра РАН. Серия: Технические науки. 2025. Т. 16, № 3. С. 80-105. Transactions of the Kola Science Centre of RAS. Series: Engineering Sciences. 2025. Vol. 16, No. 3. P. 80-105. 6. Sun T. Relation extraction from financial reports: Doctoral dissertation. University of York, 2022. 7. Zhu G. et al. Relationship extraction method for urban rail transit operation emergencies records // Institute of Electrical and Electronics Engineers Transactions on Intelligent Vehicles. 2023. Vol. 8, № 1. P. 520-530. 8. Sharma T., Emmert-Streib F. Deep mining the textual gold in relation extraction // Artificial Intelligence Review. 2024. Vol. 58, № 1. P. 983-1021. 9. Wang H. et al. Deep neural network-based relation extraction: an overview // Neural Computing and Applications. 2022. Vol. 34, № 6. P. 4781-4801. 10. ChatGPT [Электронный ресурс]. URL: https://chatgpt.com (дата обращения: 01.11.2025). 11. Claude [Электронный ресурс]. URL: https://claude.com (дата обращения: 01.11.2025). 12. Gemini [Электронный ресурс]. URL: https://gemini.google.com (дата обращения: 01.11.2025). 13. GigaChat [Электронный ресурс]. URL: https://giga.chat (дата обращения: 01.11.2025). 14. YandexGPT [Электронный ресурс]. URL: https://ya.ru/ai/gpt (дата обращения: 01.11.2025). 15. Schulhoff S. et al. The prompt report: a systematic survey of prompt engineering techniques // arXiv preprint arXiv:2406.06608. 2024. 16. Liu P. et al. Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing // Association for Computing Machinery Computing Surveys. 2023.Vol. 55, № 9. P. 1-35. 17. Sahoo P. et al. A systematic survey of prompt engineering in large language models: Techniques and applications // arXiv preprint arXiv:2402.07927. 2024. 18. Peng R. et al. Embedding-based retrieval with llm for effective agriculture information extracting from unstructured data // arXiv preprint arXiv:2308.03107. 2023. 19. Bisercic A. et al. Interpretable medical diagnostics with structured data extraction by large language models // arXiv preprint arXiv:2306.05052. 2023. 20. Schilling-Wilhelmi M. et al. From text to insight: large language models for chemical data extraction // Chemical Society Reviews. 2025. Vol. 54. P. 1125-1150. 21. Столкновение поездов на станции Княжая // Википедия : сайт [Электронный ресурс]. URL: https://ru.wikipedia.org/wiki/Столкновение_поездов_на_станции_Княжая (дата обращения: 31.10.2025). 22. DeepSeek [Электронный ресурс]. URL: https://www.deepseek.com (дата обращения: 31.10.2025). 23. LiveBench [Электронный ресурс]. URL: https://livebench.ai (дата обращения: 01.11.2025). 24. Vellum Leaderboard [Электронный ресурс]. URL: https://www.vellum.ai/llm-leaderboard (дата обращения: 01.11.2025). 25. The Big Benchmarks Collection Leaderboard [Электронный ресурс]. URL: https://huggingface.co/collections/ open-llm-leaderboard/the-big-benchmarks-collection (дата обращения: 01.11.2025). References 1. Vicentiy A. V, Dikovitsky V V, Shishaev M. G. The semantic models of arctic zone legal acts visualization for express content analysis. Computer Science On-line Conference. Springer, Cham, 2018, vol. 763, pp. 216-228. 2. Vicentiy A. Definition and formalization of the user mental model for creating adaptive geointerfaces of decision support systems. Lecture Notes in Networks and Systems. Springer, Cham, 2024, vol. 733, pp. 1095-1105. 3. Gruber T. R. A translation approach to portable ontology specifications. Knowledge Acquisition. Academic Press, 1993, vol. 5, no. 2, pp. 199-220. 4. RDF 1.2 Concepts andAbstract DataModel. Available at: https://www.w3. org/TR/rdf12-concepts (accessed 31. 10.2025). 5. Gumiel Y. B. et al. Temporal relation extraction in clinical texts: a systematic review. Association for Computing Machinery Computing Surveys, 2022, vol. 54, no. 7, pp. 1-36. 6. Sun T. Relation extraction from financial reports. Doctoral dissertation. University of York, 2022. 7. Zhu G. et al. Relationship extraction method for urban rail transit operation emergencies records. Institute o f Electrical and Electronics Engineers Transactions on Intelligent Vehicles, 2023, vol. 8, no. 1, pp. 520-530. 8. Sharma T., Emmert-Streib F. Deep mining the textual gold in relation extraction. Artificial Intelligence Review, 2024, vol. 58, no. 1, pp. 983-1021. 9. Wang H. et al. Deep neural network-based relation extraction: an overview. Neural Computing andApplications, 2022, vol. 34, no 6, pp. 4781-4801. 10. ChatGPT. Available at: https://chatgpt.com (accessed 01.11.2025). 11. Claude. Available at: https://claude.com (accessed 01.11.2025). 12. Gemini. Available at: https://gemini.google.com (accessed 01.11.2025). 13. GigaChat. Available at: https://giga.chat (accessed 01.11.2025). 14. YandexGPT. Available at: https://ya.ru/ai/gpt (accessed 01.11.2025). © Горбунов Р. А., Вицентий А. В., 2025 104

RkJQdWJsaXNoZXIy MTUzNzYz