Труды КНЦ (Технические науки вып.1/2025(16))
Труды Кольского научного центра РАН. Серия: Технические науки. 2025. Т. 16, № 1. С. 120-124. Transactions of the Kola Science Centre of RAS. Series: Engineering Sciences. 2025. Vol. 16, No. 1. P. 120-124. Дифрактограммы образцов углерода, выделенного из продуктов термолиза: 1 — Cus[Fe(CN)6]2- 13H2O; 2 — Cus[Co(CN)6k 1 7 H 2 O; 3 — Nis[Fe(CN)6k 1 5 Н 2 О; 4 — Nis[Co(CN)6k 1 6 H 2 O Список источников 1. Ngidi N. P. D., Koekemoer A. F., Ndlela S. S. Application of metal oxide/porous carbon nanocomposites in electrochemical capacitors: A review // Physics and Chem. of the Earth, Parts A/B/C. 2024. V. 135. P. 103698. 2. Ezeigwe E. R., Khiew P. S., Siong C. W., TanM. T. T. Mesoporous Zinc-Nickel-Cobalt nanocomposites anchored on graphene as electrodes for electrochemical capacitors // J. of Alloys and Compounds. 2020. V. 816. P. 152646. 3. Khan M. E. State-of-the-art developments in carbon-based metal nanocomposites as a catalyst: photocatalysis // Nanoscale Adv. 2021. V. 3. P. 1887-1900. 4. Su T.-Y., Lu G.-P., Sun K.-K., Zhang M., Cai C. ZIF-derived metal/N-doped porous carbon nanocomposites: efficient catalysts for organic transformations // Catal. Sci. Technol. 2022. V. 12. P. 2106-2121. 5. Zhang C., Li L. Study on electrochemical sensor for sunitinib cancer medicine based on metal-organic frameworks and carbon nanotubes nanocomposite // Alexandria Engineering J. 2024. V. 97. P. 8-13. 6. Yadav A., Kumar A., Verma N. Microchannel-engraved and Cu-dispersed carbon nanocomposite film as a chemiresistive sensor for aqueous metal ions // Chemical Engineering Science. 2021. Vol. 231. P. 116282. 7. Nyirenda J., Kalaba G., Munyati O. Synthesis and characterization of an activated carbon-supported silver-silica nanocomposite for adsorption of heavy metal ions from water // Results in Engineering. 2022. V. 15. P. 100553. 8. Hridya T., Emily V., Harikumar P. S. Removal of heavy metals from aqueous solution using porous (Styrene- divinylbenzene)/CuNi bimetallic nanocomposite microspheres // Environmental Nanotechnology, Monitoring & Management. 2021. V. 16. P. 100606. 9. Shahzad F., Alhabeb M., Hatter C. B., Anasori B., Man Hong S., Koo C. M., Gogotsi Y. Electromagnetic interference shieldingwith 2D transitionmetal carbides (MXenes) // Science. 2016. V. 353. P. 1137-1140. 10. Pechenyuk S. I., Domonov D. P., Gosteva A. N. Thermal Decomposition of Cationic, Anionic, and Double Complex Compounds of 3d-Metals // Rus. J. Gen. Chem. 2021. 91. P. 1834-1861. References 1. Ngidi N. P. D., Koekemoer A. F., Ndlela S. S. Application of metal oxide/porous carbon nanocomposites in electrochemical capacitors: A review. Physics and Chem. o f the Earth, Parts A/B/C, 2024, vol. 135, p. 103698. 2. Ezeigwe E. R., Khiew P. S., Siong C. W., TanM. T. T. Mesoporous Zinc-Nickel-Cobalt nanocomposites anchored on graphene as electrodes for electrochemical capacitors. J. o fAlloys and Compounds, 2020, vol. 816, p. 152646. 3. Khan M. E. State-of-the-art developments in carbon-based metal nanocomposites as a catalyst: photocatalysis. Nanoscale Adv., 2021, Vol. 3, pp. 1887-1900. 4. Su T.-Y., Lu G.-P., Sun K.-K., Zhang M., Cai C. ZIF-derived metal/N-doped porous carbon nanocomposites: efficient catalysts for organic transformations. Catal. Sci. Technol., 2022, vol. 12, pp. 2106-2121. 5. Zhang C., Li L. Study on electrochemical sensor for sunitinib cancer medicine based on metal-organic frameworks and carbon nanotubes nanocomposite. Alexandria Engineering J., 2024, vol. 97, pp. 8-13. © Домонов Д. П., 2025 123
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz