Труды КНЦ (Естественные и гуманитарные науки вып.3/2025(4))
agronom.ru/derevya/kakoe-kolichestvo-ryadov-derevev-i-kustarnikov-chasche-vsego-vysazhivayut-v- polezaschitnyh-lesopolosah.html (accessed 11.12.2023). 10. COMSOL. Available at: https://www.comsol.ru/ (accessed 12.05.2022). 11. Amosov P. V., Baklanov A. A., Makarov D. V., Masloboev V. A. Prognoz zagryazneniya atmosfery pri sluchajnom vabore diskretnykh pylyashchikh uchastkov na baze chislennogo modelirovaniya [Forecast of atmospheric pollution with a random selection of discrete dusty areas (based on numerical modeling)]. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal [News of the Higher Institutions. Mining Journal], 2021, no. 5, pp. 63-74. doi:10.21440/0536-1028-2021-5-63-74 (In Russ.). 12. Melnikov N. N., Baklanov A. A., Amosov P. V. Vliyanie vysoty ograzhdeniya pylyashchej poverkhnosti khvostokhranilishcha na zagryaznenie atmosfery [The effect of the height of the barrier of the dusty surface of the tailings dump on atmospheric pollution]. Gornyi zhurnal [Mining Journal], 2013, no. 3, pp. 92-94. (In Russ.). 13. Amosov P. V., Baklanov А. А., Masloboev V. А. Obosnovanie metodicheskogo podkhoda k otsenke intensivnosti pyleniya na khvostokhranilishche [Justification of the methodical approach to estimation of dust intensity at tailing dump]. Herald o f the Kola Science Centre o f the RAS [Vestnik Kolskogo nauchnogo tsentra], 2018, no. 1 (10), рр. 5-14. doi:10.25702/KSC.2307-5228.2018.10.1.5-14 (In Russ.). 14. Amosov P. V., Baklanov A. A., Makarov D. V., Masloboev V. A. Chislennoe modelirovanie zagryazneniya atmosfery v podkhodakh sluchajnogo vybora diskretnykh uchastkov pyleniya i pointerval’nogo raspredeleniya razmera pyli [Numerical modeling of atmospheric pollution in the approaches of random selection of discrete dusting sites and interval distribution of dust size]. Vestnik o fMSTU [Bulletin of the Murmansk State Technical University], 2022, no. 25 (1), pp. 61-73. https://doi.org/10.21443/1560-9278-2022-25-1-61-73 (In Russ.). 15. Westphal D. L., Toon O. B., Carlson T. N. A Case-Study of Mobilization and Transport of Saharan Dust. Journal of the Atmospheric Sciences, 1988, no. 45, pp. 2145-2175. 16. Gillette D. A., Passi R. Modeling Dust Emission Caused by Wind Erosion. Journal of Geophysical Research- Atmospheres, 1988, ^ l . 93 (D11), pp. 14233-14242. 17. Marticorena B., Bergametti G. Modeling the Atmospheric Dust Cycle. 1. Design of a Soil-Derived Dust Emission Scheme. Journal of Geophysical Research-Atmospheres, 1995, ^ l . 100 (D8), pp. 16415-16430. https://doi.org/10.1029/95JD00690. 18. Zender C. S., Bian H. S., Newman D. Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology. Journal of Geophysical Research-Atmospheres, 2003, ^ l . 108 (D14). Available at: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2002JD002775 (accessed 23.01.2020). 19. Menut L., Schmechtig C., Marticorena B. Sensitivity of the Sandblasting Flux Calculations to the Soil Size Distribution Accuracy. Journal of Atmospheric and Ocean Technology, 2005, no. 22, pp. 1875-1884. 20. Kok J. F., Mahowald N. M., Fratini G., Gillies J. A., Ishizuka M., Leys J. F, Mikami M., Park M.-S., Park S.-U., Van Pelt R. S., Zobeck T. M. An improved dust emission model — Part 1: Model description and comparison against measurements. Atmos. Chem. Phys., 2014, ^ l . 14 (23), pp. 13023-13041. 21. Klose M., Jorba O., Gongalves Ageitos M., Escribano J., Dawson M. L., Obiso V., Di Tomaso E., Basart S., Montane Pinto G., Macchia F., Ginoux P., Guerschman J., Prigent C., Huang Y., Kok J. F., Miller R. L., Perez Garria-Pando C. Mineral dust cycle in the Multiscale Online Nonhydrostatic Atmosphere Chemistry model (MONARCH) Version 2.0. Geosci. Model Dev., 2021, no. 14, pp. 6403-6444. Available at: https://doi.org/10.5194/gmd-14-6403-2021 (accessed 18.09.2022). 22. Metody rascheta turbulentnykh techenij [Methods for calculating turbulent flows]. Moscow, Mir Publishing, 1984, 464 p. 23. Teodorovich E. V. Yavleniya turbulentnogo perenosa i metod renormalizatsionnykh grupp [Phenomena of turbulent transport and the method of renormalization groups]. Zhurnalprikladnoi matematiki i mechaniki [Journal of Applied Mathematics and Mechanics], 1988, no. 52 (2), pp. 218-224. (In Russ.). 24. Predel'no dopustimye koncentracii (PDK) zagryaznyayushchih veshchestv v atmosfernom vozduhe gorodskih i sel'skih poselenij: Gigienicheskie normativy [Maximum permissible concentrations (MPC) of pollutants in the atmospheric air of urban and rural settlements: Hygienic standards]. Moscow, Feder. Center of Hygiene and Epidemiology of Rospotrebnadzor, 2019, 55 p. (In Russ.). Информация об авторах П. В. Амосов — кандидат технических наук, ведущий научный сотрудник; А. А. Бакланов — доктор физико-математических наук, профессор, главный научный сотрудник, консультантВМО; Г. В. Калабин — доктор технических наук, профессор, главный научный сотрудник; Д. В. Макаров — доктор технических наук, директор Труды Кольского научного центра РАН. Серия: Естественные и гуманитарные науки. 2025. Т. 4, № 3. С. 45-55. Transactions of the Kola Science Centre of RAS. Series: Natural Sciences and Humanities. 2025. Vol. 4, No. 3. P. 45-55. © Амосов П. В., Бакланов А. А., Калабин Г. В., Макаров Д. В., 2025 54
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz